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— The characterization of matrices which can be optimally scaled with respect to various
< S modes of scaling is studied. Particular attention is given to the following two problems:
S — (a) The characterization of those square matrices for which
fad E i?)f lub (D-14D)
= O
O is attainable for some non-singular diagonal matrix D.
=w (b) The characterization of those square non-singular matrices 4 for which

inf cond,y(DyAD,)

Dy, D2

is attainable for some non-singular diagonal matrices D, and D,.

PHILOSOPHICAL
TRANSACTIONS
OF

For norms having certain properties, various necessary and sufficient conditions for
optimal scalability are obtained when, in problem (a), the matrix 4 and, in problem (),
both 4 and A4-1 have chequerboard sign distribution. The characterizations so
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308 T.I. FENNER AND G.LOIZOU

established impose various conditions on the combinatorial and spectral structure of the
matrices. These are investigated by using results from the Perron-Frobenius theory
of non-negative matrices and combinatorial matrix theory. It is shown that the
Holder or /,-norms have the required properties, and that, in general, the only norms
having all of the properties needed, for both the necessary and the sufficient conditions
to be satisfied, are variants of the /,-norms. For the special cases p = 1 and p = o0, the
characterizations obtained hold for all matrices, irrespective of sign distribution.

1. INTRODUCGCTION

Several types of matrix scaling are of interest in the solution of various numerical problems.
These may be utilized in trying to minimize an appropriate condition number for the particular
problem. The most common problems of this type are (Bauer 1968):

A
(I) ¥1(4) = inf luby;,(D~14D), similarity scaling,
D
A
(IT) X12(4) = inf cond,y(4D,)
Dy . .
A , one-sided scaling,
(I1I) X12(4) = inf cond,,(D, 4)
Dy
A
(Iv) k12(4) = inf cond,y(D,4D,), two-sided scaling,

D1, D2
A
where = stands for ‘is defined as’ and D, D,, D, range over the set of non-singular diagonal
matrices. As usual, cond,,(4) is the condition number of a non-singular real or complex matrix 4
with respect to two vector norms | .|, | . ||5, defined by (Bauer 1963):

cond,y(A4) = lub;y(4) lub,, (471).
In fact cond,,(4) can be defined for rectangular 4, having full column rank, as lub,,(4)/glb,,(4),
but if the columns of 4 are notindependent glb,,(4) = 0, so cond,,(4) is not defined. In problem
(I), obviously, A must be square, but need not be non-singular.

If 4 is non-singular and Hermitian then under two-sided scaling this property is preserved if
D, = D§. This gives rise to the problem

A
(V) k12(4) = inf cond,y(D¥AD), symmetric scaling,
D

which, for practical purposes, is mainly of interest when 4 is positive definite.

There is some simplification in dealing with problems (II) to (V), if they are generalized by
replacing 4 and A~ by two arbitrary rectangular matrices B and C, respectively, where B and CT
have the same dimensions (Bauer 1963; McCarthy & Strang 1973), yielding

(ITA) X12(B; C) Z i11)1f {lub,y(BD,) lub,, (D31C)},

(ITIA) X12(B; C) - ill)llf{lubH(Dl B) lub,, (CD7Y)},

(IVA) ky9(B; C) z Dinfl‘){lubm(DlBDz) luby, (D31CD71Y)},
(VA) kia(B; C) z ilr)xf {lub,,(D¥BD) lub,, (D-1C(DH)-1)},
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OPTIMALLY SCALABLE MATRICES 309

where in (VA) both B and C are Hermitian. [Note that y;,(B; C) = y¥o:(C; B), cf. Fenner &
Loizou (1974).]

The various quantities on the left hand sides of (I) to (V) and (IIA) to (V A) are called minimal
condition numbers for the corresponding scaling problems.

In various papers the problem of finding, or finding bounds on, some of the minimal condition
numbers has been studied extensively (Bauer 1963; Bauer 1969; Fenner & Loizou 1974;
McCarthy & Strang 1973; van der Sluis 1969). In addition the problem of characterizing those
matrices (or pairs of matrices) which are optimally scaled (best conditioned) in one of the above
senses, i.e. those for which the corresponding condition number is minimal, has been investigated
(Bauer 1963; Businger 1969; Fadeeva 1967; Forsythe & Straus 1955; Golub & Varah 1974;
McCarthy & Strang 1973).

The purpose of this paper is to examine the related problem of optimal scalability, i.e. to charac-
terize those matrices (or pairs of matrices) for which the infimum on the right hand side of the
appropriate equation of (I) to (V), (IIA) to (V A), is attainable. This problem, which has received
relatively little attention in the literature, has been completely solved in cases (II) and (III) for
an important class of norms (Businger 1968), but for cases (I), (IV) and (V) only partial results,
under very special conditions, have been obtained (Businger 1968; Strém 1972). In this paper
results for cases (I) and (IV) (and case (IVA)) are derived, and it is shown that the previously
mentioned results are special cases of the results obtained here. In particular, when 4, B and C
have chequerboard sign distribution (Bauer 1963), the problem is completely solved in cases (I) and
(IVA), for a certain class of norms. This also yields a solution for case (IV) if both 4 and 4!
have chequerboard sign distribution.

For cases (II) and (III) the results of Businger (1968) can be slightly generalized. It is there
shown that any non-singular matrix 4 is optimally scalable in senses (II) and (II1I) with respect
to a single absolute norm (Bauer, Stoer & Witzgall 1961), |.[; = ||.[,. It is readily seen that
Businger’s proof can be generalized to show that any non-singular matrix 4 is optimally scalable
in sense (II) with respect to two norms || . |, and | . ||, provided || . ||, is absolute, but not necessarily
[ .]; Similarly, if ||. ||, is absolute, 4 is optimally scalable in sense (III).

Problems (I) to (V) are of importance in several numerical problems (Bauer 1963; Bauer
1966); in particular, (I) for eigenvalue problems (Bauer 1968; Fadeeva 1967; Osborne 1960);
(II) and (III) for inclusion theorems (Bauer & Householder 1961; McCarthy & Strang 1973)
and as a measure of the linear independence of the columns of 4; (IV) and (V) in error analyses
for the solution of systems of linear equations (Bauer 1966; Todd 1968).

In §2 the various concepts, notations and properties used in the paper are defined, and several
preliminary results involving these are then obtained in § 3. §4 is devoted to various combinatorial
results which, when utilized together with the conditions for optimal scalability subsequently
established in §5, indicate the combinatorial and spectral structure of those matrices which are
optimally scalable. The applicability of the results of § 5 depends on the norms concerned satis-
fying certain properties, and a principal one of these properties is characterized in §6. Finally,
the paper ends with a discussion, in §7, on the various conditions, both necessary and sufficient,
for optimal scalability, and on the classes of norms for which these are valid.

38-2
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310 T.I. FENNER AND G.LOIZOU

2. DEFINITIONS

It will become apparent in the sequel that characterizations of optimally scalable matrices
depend heavily on certain aspects of the combinatorial structure of the matrices involved. The
concepts defined below will be useful in subsequently obtaining certain combinatorial results.

The matrices and vectors considered in this paper can, in general, be either real or complex.
X, will denote the Euclidean space of real or complex £-dimensional column vectors, i.e. R* or CF.
The X,, for all £, will be either all real or all complex, and all matrices will be real or complex,
correspondingly.

Let 4 be a square matrix, then G(4) denotes the digraph (directed graph) associated with 4
(Fenner &Loizou 1971), i.e. the matrix 4#, obtained from 4 by replacing all non-zero elements
by unity, is the adjacency matrix of G(A4) (Wilson 1972). It is noted that G(A4) is strongly connected if
and only if 4 is irreducible (Varga 1962), and G(A) is (weakly) connected (Harary, Norman &
Cartwright 1965) if and only if 4 is not completely (totally) decomposable (Harary 1962), i.e. there
exists no permutation matrix P such that

. 4, 0
a1
where A4;; and 4,, are square non-vacuous matrices. Note that a strongly connected digraph contains
a directed path from any given vertex to any other given vertex; thus, if 4 is irreducible, for any
givent, j, there exists a sequence ky, £y, ..., kg such thatay, , ay, 1y, -5 @k, & @i, ; are all non-zero.
Another related property is that of full indecomposability (Fenner & Loizou 1971; Fenner &
Loizou 1977; Marcus & Minc 1963), namely

DeriNtTION 2.1. A square matrix 4 is fully indecomposable if there exist no permutation matrices
P and @ such that

] All AIZ
rrag =[5 3] W
where A;; and 4,, are square non-vacuous matrices.
A square matrix having the form of the right hand side of (1), where 4,; and 4,, are square
and non-vacuous, is said to be in reduced form.
If 4 is rectangular, and non-square, then G(4) is not defined, but, for any rectangular matrix 4,
K(4) denotes the directed bigraph (bipartite graph) associated with 4 (Dulmage & Mendelsohn
1958; Fenner & Loizou 1971), i.e. the bipartite graph with vertex sets X = {x;} and ¥ = {y;} in

which the arc x;;j is present if and only if a,; # 0.
It is similarly noted that K(A4) is connected if and only if 4 is chainable (Hartfiel & Maxson
1975), i.e. there exist no permutation matrices P and @ such that

PTAQ = [‘311 A:ﬂ, (2)

where at least one of the zero submatrices on the right hand side of (2) is non-vacuous. (Note
that, in general, neither 4;, nor 4,, need be square.)

If 4,, and 4,, are non-vacuous, the matrix on the right hand side of (2) is called the direct sum
of 4,; and 4,,, denoted by 4;; @ A4,,. This notation will also be used if 4,, is vacuous, in which
case if Ay, is k x [ and Ay, is (m—k) x (n—1) (so either £ = m or | = n) 4,; ® A,, will denote the
m x n matrix with leading £ x [ submatrix A4;,, and all other elements zero. If 4,; is vacuous,
Ay; @ Ay is defined similarly.
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A connected component (Harary, Norman & Cartwright 1965) of a digraph is a maximal connected
subgraph of the digraph, and a strong component is a maximal strongly connected subgraph.

Two matrices B and C are co-conformable if the products BC and CB both exist, i.e. if B is
mx n and Cis n x m, for some m, n.

Two vectors & and y, having the same dimension, have coinciding zeros if, for each 7, x; = 0 if
and only if y, = 0.

It is well known (see theorem 2.7 of Varga (1962)) that any square non-negative matrix 4
has a non-negative eigenvalue equal to its spectral radius, p(4), and, furthermore, that 4 possesses
anon-negative right eigenvector ¥ and a non-negative left eigenvector y*, corresponding to p(4).
If A is irreducible then & and yT, which are unique in this case, are the right and left Perron eigen-
vectors of A, respectively, and are positive. For arbitrary non-negative matrices this is generalized
as follows:

DEerINITION 2.2. A right (left) P-vector of a non-negative matrix 4 is a non-negative right
(left) eigenvector of 4 corresponding to p(4).
Note that if A4 is reducible its P-vectors are not necessarily unique.

DEeriNiTION 2.3. A non-negative matrix 4 has property C if given any right P-vector » of 4
there exists a left P-vector y* of 4 such that ¥ and y have coinciding zeros.

DeFInITION 2.4. A non-negative matrix 4 has property C! if given any right P-vector » of 4
there exists a left P-vector yT of 4 such that, for each 7, y; = 0 implies x; = 0.

DEeFinITION 2.5. A non-negative matrix 4 has property Cr if given any left P-vector y* of 4
there exists a right P-vector & of 4 such that, for each 7, x; = 0 implies y; = 0.

Obviously 4 has property Cl if and only if AT has property Cr.

Throughout this paper P, Q, R, P, Q,, R,, etc., denote permutation matrices; /,, denotes the
identity matrix of order n, this being shortened to just / if the order is apparent from context;
e; denotes the jth axis vector (i.e. the jth column of /), and e denotes a vector with all
components equal to unity; 2, denotes the set of all #» x # non-singular non-negative diagonal
matrices, this similarly being abbreviated to just 2, if the order is evident.

For any vectors & = (xy, X5, ..., %,)", ¥ = (41,5, ---,¥,,)", and any m x n matrices 4 = (a;;),
B = (by),
|%| denotes the vector (|ay|, %5, .oy |%,0])7;
x4 denotes the vector (a4, x4, ..., x%)T, for any ¢ > 0;
¥ @y denotes the direct sum of ¥ and y, namely the vector

(xTyT)T = (xli Xas +oo5 Xms Y15 Yos "°>:l/n)T;
ifm = n,

X >y meansy; > .
=Y 29 for i=1,2,.,m
¥ >y meanswx; > y;
A > B meansa;; > by .
W for 1=1,2,...,m =1,2,...,n
A > B means a;; > by A e
|4] denotes the m x n matrix whose (z,7)th element is |a;;|.

DEerINITION 2.6. An m x n matrix 4 has a chequerboard sign distribution (Bauer 1963), herein-
after abbreviated to c.b.s.d., if there exist matrices £y, E, with |E,| = 1, |E,| = I, such that

A = E|A|E, (3)
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312 T.I. FENNER AND G.LOIZOU

As in Householder (1964) and Stoer (1964a), all norms are assumed to be strictly homogeneous.
A norm | .| is absolute if || |#||| = | #| for every vector &. It is monotonic if |¥| < |y| implies that
[#]| < |ly]. A well-known result of Bauer et al. (1961) states that a norm is absolute if and only if it is
monotonic.

DerFINITION 2.7. A norm | .| is strongly monotonic (cf. van der Sluis 1969) if |#| < |y| and
| #] # || implies that ||#] < |y].
It is easily seen, by the continuity of a norm, that a strongly monotonic norm is monotonic.
The most commonly encountered norms are the /,-norms (Holder norms), 1 < p < oo, where,
for = (%, x5, ..., )7,
n 1/p
(£ 1) <<,
| = L3(%) = {
max|x|  (p = o).
1<isn
Obviously these norms are absolute and, except for p = 0o, are strongly monotonic.
Any norm | . | on aspace of (column) vectors induces a norm on the space of dual (row) vectors;
this norm, called the dual norm (Bauer et al. 1961), is defined by
H
1D _ gup YE 4
(K%l X#Io) el (4)
Itis wellknown (Bauer et al. 1961) that the dual of an absolute norm is itself absolute. Equation (4)
gives rise to the concept of a dual pair of vectors (Bauer et al. 1961; Stoer 1964.a).

DermvTION 2.8. A pair of non-zero vectors, y¥ and &, are dual with respect to the norm | .| if
[P ] = [y™sl. (5)

This is written symbolically as y¥| . Itis thus seen thatif # is dual to y¥ then ¥ maximizes the
right hand side of (4). The relation of duality is in fact quasi-symmetric, since

x| = || %|PP = su _|_y_fi_x_|
[# = ] y}{fo lyE[o

If .| =&(.), 1 < p < oo, its dual norm is given by

Iy™” = (y), where 1fp+1/g = 1. (6)
Furthermore, y¥|  if and only if
(i) there exists 0 such that 7, x; = €|¥; |, for all 7, and
(ii) (a) for 1 < p < oo, there exists & > 0 such that

|x;|? = aly,]? for all i, (7)
or (b) forp =1,
|%;] ( max |y,| —|y;|) =0 foralli, (8)
or (¢) for p = oo, -
ly;] ( max |x;| = |x;]) = 0 forallz (9)
1<k<n

If #,y > 0 then condition (i) is fulfilled automatically.

Throughout it will be assumed that the norms |.||; and | .||, are defined on X,, and X,,
respectively, m,n > 2. If m = n then n will generally be used, and if ||. |; = || .||, the norm may be
simply denoted by |.|.
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Given two vector norms | .|, and | .|, the least upper bound norm of an m x n matrix 4, with
respect to |. |, and ||.|,, is defined by any of the following characterizations:

. T PO | T |y™ Ax|
R+ P+ O o e N T O (1)
If|.ly=|-.la=]-| then luby(.) may be shortened to lub(.), and similarly for condy(.),
k11(.), ete.
Let U and V be m x m and n x n non-singular matrices, respectively. Then, given norms | .|,
and | . |, define

[#)ir = [Us]|, for xeX,,
[#ellor = | Vaal, for %X,
It is easily shown that ||. |,y and ||. ||y are norms, and that the dual norms are given by
Iytliv = [y P for y1€X,,

and similarly for ||. |3 If | .|, = ||.]a = | .| then | .|y is simply written as | . ||y, etc. Let 4 be
an m x n matrix, and lub{% (4) the lub norm of 4 with respect to the norms | . |,y and | . | 55, then

1ub¥% (4) = lub,,(UAV-Y).

DEFINITION 2.9. A norm | .| is symmetric (Fenner & Loizou 1974) if, for all permutation
matrices P and all vectors «,
Il

It is easy to verify that the dual of a symmetric norm is also symmetric, and when | .||, and
.| are both symmetric then, for any 4 and any permutation matrices P and @,

1ub?g(4) = luby,(4). (11)

p=lsl, ie [Psl =],

DEFINITION 2.10. Anorm | .| is subspace monotonic if, for every P, and any & = P(%; @ &,) € X,
%, @0 p < [[].

Obviously every monotonic (absolute) norm is subspace monotonic, and it is straightforward to
show that the dual of a subspace monotonic norm is itself subspace monotonic. In addition, the
following remark holds.

REMARK 2.11. If the norm ||.|| is subspace monotonic, and & = P(¥; @ 0) for some P, then
for any y¥ = (yj! ® yi)PT that is dual to », with ¥, and y, having the same dimension, the
vector (yff @ 0) PT is also dual to .

The proof of this follows directly from the definition of duality and (4), by using the fact that
| -® is subspace monotonic.

DErFINITION 2.12. A pair of norms | .|y, [I. [, has property Ly, if, for any P and @, and any
& =P(x; ® %) €X,, ¥y = Q¥ D ¥2) €X,,

[%, ®0]1p < |31 ® 020

and [0 ® %510 < |0 @ Y220 = [|&]y < [ly]e (12)

If the pair .||, ||| has property L, it is easy to see that the implication of (12) may be
generalized to direct sums of more than two vectors, i.e. if

¥=P%@%@...0%), y=Q0 @y ®... 0y,


http://rsta.royalsocietypublishing.org/

'\
A

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

2
AL A

SOCIETY

Y o ¥

SOCIETY

OF

A

A

OF

Downloaded from rsta.royalsocietypublishing.org

314 T.I. FENNER AND G.LOIZOU

and
[#:20@0... 00|, < [y, ©0D0... ® 0|5,

<|
S
10D %, @0... @oulp < ||0 @yz@o . @ 0]50,

0©0®...0® f,p < ”0@0@ 0@ ¥ 20

then |||, < |¥]||;- This follows directly from the definition of property L,, since @ is associative.
It is immediately seen that the pair of norms /(. ), {3(.), 1 < p < o0, has property L,.

REMARK 2.13. If the pair of norms ||. ||, || . ||, has property Ly, then | . ||, is subspace monotonic.

This follows directly from (12) on choosing &, such that |%; @ 0], = |y, @ 0], ¥, = 0 and
P=1

The pair of norms |. |4, || . |5 is said to have property L if both properties Ly, and Ly, hold; thus
a single norm | . |, is said to have property L if property Ly, holds. It is easy to see that a single
norm having property L must be monotonic, and thus absolute.

Property L. may be characterized directly as follows:

REMARK 2.14. The pair of norms |.|,, | .|, has property L if and only if (12) holds with
equality throughout, where P, @, ¥ and y are as in definition 2.12.

Proof. The necessity of the condition follows immediately from property L. If (12) holds with
equality throughout it is easy to show that [y, @ (—¥5)[20 = [|¥1 @ ¥s| 20 and thence that | . |5 is
subspace monotonic. By taking suitable multiples of y, and y, so that equality holds on the left
hand side of (12), and by using the triangle inequality, it then follows that property L, holds;
similarly property Ly, holds, which completes the proof.

(Cf. Monotonic and absolute norms on direct sums in Lancaster & Farahat (1972), in particular
Theorem 1.)

|y dx]
ERHER
pair for A with respect to ||.||; and ||.[ly, or, more briefly, a maximizing pair for lub,,(4). For
absolute norms any non-negative matrix 4 has a non-negative maximizing pair, and, furthermore,
if 1, ¥ is a maximizing pair then so is |yH|, |#|.

It is easily seen from the definition of dual norms that, if y¥, & is a maximizing pair for luby,(4),

A pair of vectors y&, & for which the supremum of —=——"—is attained is called a maximizing

luby(4) |52 [| &2 = [yTIP | A%], = [y7A4]2 %] = |yTAs]. (13)

Thus, for a maximizing pair,

Y4 and  y"d|, s, (14)
where ||; means ‘dual with respect to ||. ||;’, etc. However, although these two dualities do not, in
general, imply that yH, & is a maximizing pair, certain results of Bauer (1963) depend on this
being true. For this reason Bauer defined a pair of norms having property S,, as follows:

DEeFINITION 2.15. A pair of norms |. |4, | . |2 has property S,, if, for every m x n matrix 4 > 0
and every pair of vectors y*, ¥ > 0,
yT|,Ax and yTA|,x = T, xis a maximizing pair for lub,(4). (15)

Although Bauer only defined property S,, for m = #, it will be useful in the sequel to consider
the above generalization to the rectangular case, which is clearly still a well-defined concept.
Stoer & Witzgall (1962) have shown that property S;, holds for Hélder norms ||. ||, = | .|l = I5(.),
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1 < p < oo (see footnote on page 78 of Bauer (1963)), and it is not difficult to see that their proof
is still valid for ||. ||, = &(.), |.]a = 4(.), 1 < p < o, with m # n. For p = 1 or co this will be
proved in §3.

A slightly weaker property than property S, is defined by:

DEFINITION 2.16. A pair of norms |. |, | .|, has property Si, if, for every m x n matrix 4 > 0
and every pair of vectors y*, ¥ > 0, the implication (15) holds.

It is noted that lemma I (i) of Bauer (1963) is still valid under the assumption that the norms
have properties S;, and S, since the only use made of (15) in the proof of this result is when y*
and « are both strictly positive.

In this paper certain results of Stoer & Witzgall (1962) and Bauer (1963), which were proved
for strictly positive matrices, are extended to certain classes of non-negative and c.b.s.d. matrices,
and insome cases to arbitrary matrices. Itis therefore necessary to define new properties as follows:

DEFINITION 2.17. A pair of norms | . |, || . | » has property S;, if, for every m x n matrix 4 > 0
and every pair of vectors yT, ¥ > 0, the implication (15) holds.

DEFINITION 2.18. A pair of norms | . |y, | . |2 has property Si if, for every m x n matrix 4 > 0,
where 4 = P(4, ® 0) QT with 4, being k£ x/, 1 <k <m, 1 <! < n, and every pair of positive
vectors ¥, € X;, #; € X, the implication (15) holds with y* = (y; ® 0)" PT and ¥ = Q(x, ® 0).

Obviously property S}, implies property S;,. Furthermore, if the norms are subspace mono-
tonic, by generalizing theorem 2.11 of Gries & Stoer (1967), it can be shown that property Sf
holds for the pair ||. |, | .|| if and only if property S,, holds for every pair of norms induced on
a pair of coordinate subspaces of X,, and X,, by |.|[; and |. |5, respectively. [See Gries (1967) and
Gries & Stoer (1967) for definitions of induced norms and coordinate subspaces, and also Fiedler &
Ptak (1960).]

Although properties 8,, and Sj;, are more restrictive than property Sj,, it will be shown in §3
that, for ||.|; = &2(.),||.[ls = (.), 1 < p < oo, these properties also hold.

From the definition of property S,, it is easy to show:

REMARK 2.19. If the pair of norms | . |4, || . ||; has property S,,, then the pair ||. [y, | . [l also
has property S, if U = P, D;, V = P, D, for some permutation matrices P, P, and some D, € 9,
D,e D, A similar result holds for properties Sj,, S;, and S.

The pair of norms ||. |y, ||. ], is said to have property S if both properties S;, and S, hold;
consequently a single norm is said to have property S if property Sy, holds; similarly for properties
S’, S and S*.

DEFINITION 2.20. A pair of norms ||. ||y, | . |5 is {ub-absolute if, for every pair of co-conformable
matrices B and C,

luby, (| B]) = lubyy(B), luby(|C]) = lubyy(C).

Asinglenorm ||. | is said to be lub-absolute if lub(]4|) = lub (4), for every 4. It can be shown
that thepair .|, = 2(.), || |2 = &,(.) is lub-absolute if and only if p; = p, = 1 or p; = p, = co.
It is also true that if the pair || . ||y, || . | is lub-absolute then both of these norms must be absolute.
This may be shown by considering matrices of rank unity (Fenner 1977).

39 Vol. 287. A.
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3. PRELIMINARY RESULTS
In this section various preliminary results used subsequently are stated or derived.

3.1. Minimal condition numbers
If.]y=|.[. then

lub (4) > p(4), (16)
which, from (I) (see Introduction), implies that
¥ (4) = p(4). (17)
Also, for arbitrary | .|y, |- [ from (IVA), by using the multiplicativity of lub norms,
k12(B; C) = p(BC). (18)

Given two absolute norms, | .|, and ||. |, for any two matrices 4 and G such that 4 > |G|, it is
easy to show (Bauer 1963) that

lub,,(4) = lub,(G). (19)
Now, for absolute norms, by virtue of lemma III of Bauer (1963), if D, and D, are non-singular
diagonal matrices such that D, 4D, exists, then

lubyy(DyADy) = lubys(|Dy| 4 |Dy)). (20)
Therefore, for absolute norms, there is no loss of generality in assuming that D, D,, D, are non-
negativein (I) to (V) and (ITA) to (V A), so it may be assumed that all scaling matrices D, D;, D,,

etc., are non-negative, i.e. are in 2.
Under this assumption, for absolute || .|, = ||. |5, it follows from (19) that, if 4 > |G|,

¥ (4) > ¢(G). (21)
Similarly, for two absolute norms | .|, and | .|, if B > |F| and C > |H|,
K12(B; C) > kyo(F; H). (22)
Suppose now that 4 has c.b.s.d., then from (3) and (20)
lubyy(4) = Tuby,([4]). (23)
Thus, for absolute || .||, = | .| and 4 having c.b.s.d., it follows from (23) that
¥r(d) = y(|4]). (24)
Similarly, for two absolute norms | .|, and ||. |3, and B and C both having c.b.s.d.,
k12(B; C) = kya(| Bl; |C]). (25)

Obviously (24) and (25) also hold for non-c.b.s.d. matrices if the pair of norms is lub-absolute.

3.2. lub norms of direct sums
The following two lemmas are concerned with pairs of norms having property L, or L.

Lemwma 3.1. If the pair [|. ||, || || has property Ly,, then the pair ||. |1y, | - | 2 also has property
L, if U = R, D, and V = R, D, for some permutation matrices R, R, and some D, €%, D,e D,.

Progf. Consider, for arbitrary P and @, any two vectors,

¥=P(x; @ %)X, and y=0Q(y, ®y,)eX,,
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satisfying
[#1 © 01vp < |91 @ 0laq, [0 ® %ollivp < [0 ® Yafave- (26)
Now let PTD,P = DY @ D®, QTD,Q = DY ® DP, where DY and DY are square and conform-
able with &, and y,, respectively. Then (26) may be written as
[D9%, @ 0]12,p < [DDY; ® 02,0, |0 ® DP%5] 15, < [0 ® DDY,l5z,0-
On using property L,, for the pair || . ||y, | - | 5, this now implies that | R, D, 8|, < | Ry D,y 2, yielding
the result.
LemMa 3.2. If the pair ||, | .||z has property L then |.|; and ||. ||, both have property L.

Progf. Consider, for arbitrary P and @, any two vectors, & = P(%; @ &,), 8’ = Q(¥1 @ ¥3) e X,,
(where #,; and #; are not necessarily of the same dimension), which satisfy

[#, ®0)1p = [|#1® 010, [0 D #3|1p = [0 ® %310
Now, for any &, 1 < k < n—1, let y, € X,, y,€X,_; be chosen such that

|y ® 0]y = [, ® 0l|1p = [|#] @ 010,

10 ® ol = [0 ® %510 = [0 ® ¥ 10-
On using property L, by remark 2.14, these equalities imply that |y, @ ¥.], = [ %], = [|#'[|:-
Hence, by remark 2.14, || .||, has property L, and it follows similarly that | .||, also has property L,

which completes the proof.
Various results on lub norms of direct sums and other partitioned matrices are now established.

LemmA 3.3. Let || .|, and ||. ||, be a pair of norms, with | . |, subspace monotonic, and for some
Pand @ let
[yls = |y ®01p for y,€X,,

EAPSEENE 0”2@ for xeX,

where 1 < k£ <m and 1 <! < n. Then, if 4 = P(4, ® 0) QT is an m x n matrix with 4, being
Proof. From (10),

_ A%, |P(4, %, @ 0],
S T LICTEAIP
“A1x1®0”1P |4y %5

sup = lubg,(4,),

x.;&o [#, @00 o [%i]a

since | .||, is subspace monotonic. This completes the proof.
By considering the dual characterization of lub,,(4) it is seen that lemma 3.3 also holds if ||. |,
is subspace monotonic instead of || . [|,.

LemwMA 3.4. For any subspace monotonic norms ||.||; and ||. ||y, if

_[4, Z
a=[3 a4l
then lub,,(4) > max {lub,y(4; @ 0), lub,(0 & 4,)}.
(Note that, given the dimensions of 4,, the dimensions of the — possibly vacuous — zero matrix
in the expression lub,y(4; @ 0) are implicit from the fact that ||.||, and | .|, are defined on X,,

and X,, respectively; similarly for lub;,(0 @ 4,).)
39-2
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Progf. Let A, be k x [, then for all non-zero ¥, X,

”A (% @0, 4% @ le”l > |41 %, @0”1
|#, @0, %, @ 0 % ® 0], °

since | .||, is subspace monotonic. For all #,€ X, _,, it then follows that

[4:%, @ 0],  [[(4, ®0) (%, @ %),
[EXE) A EXCEAR

luby,(4) >

b

since ||.|, is also subspace monotonic. Therefore lub;y(4) > lubyy(4; @ 0), and the other
inequality follows similarly. This completes the proof.

Note that if 4, is vacuous (k = 0 or [ = 0), or 4, is vacuous (k = m or [ = n), this result is still
valid by a slight modification of the proof. Note also that if I/ and Z are both zero (possibly
vacuously) the requirement that | .|, be subspace monotonic may be dropped. Alternatively,
by considering the dual characterization of lub,,(4), it follows that if W and Z are both zero
the requirement that | . |, be subspace monotonic could be dropped, provided ||. || is subspace
monotonic, since the dual of a subspace monotonic norm is subspace monotonic.

CoroLLARY 3.5. For any norms | .|, and | .|,, with |||, or | .||, subspace monotonic,

lubiy(4; © 43 @ ... © 4;) > max lubye(0 @ .06 4, ® 0... ® )},

1<t

Equality can be achieved in corollary 3.5 for pairs of norms having property L,,. This follows
from the following result.

LemumA 3.6. For a pair of norms | .|, || .||, having property L,,
lubyy(4; @ 4,) < max {lub,,(4; @ 0),luby,(0 @ 4,)}.
Proof. Let A, be k x{, and let @ = max {lub,,(4; ® 0),1ub;,(0 ® 4,)}. Then, for any &,eX,,
4,2, @ 0|y < lubyy(4, ® 0)| %, ® 0, < [ax; @ O, (27)
Similarly, for any x,eX, _;, |0 @ 4,4,/ < [|0 @ a®,,, which with (27) yields
[1(4; @ 45) (%, @ %) |1 < [0y @ by = o %1 D s
by property Ly,. Therefore lub;y(4; @ 4,) < «, which completes the proof.

Note that the result holds trivially if 4, or 4, is vacuous.

CoroLLARY 3.7. For a pair of norms | .|, || |, having property L,,,

lubyy(A; @ 4y @ ... @ 4;) = max{lubyy (0@ ... 0® 4, @ 0... ® 0)}.

1<jist

Proof. This follows directly from corollary 3.5 and lemma 3.6, on using remark 2.13.

LemMA 3.8. For a pair of norms ||. ||y, |||, having property L, given a pair of co-conformable
matrices B = B, ® B,, C = C; ® C,, where B; and C; are non-zero and also co-conformable,
there exist positive constants, A and u, such that

lubp(By @ Au~1By) lubyy (Cy @ A-14Cy)
— max {lubyy(B, @ 0) lubyy (C; @ 0), lubya(0 @ By) lubyy(0 @ Cy)}
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Progf. By corollary 3.7. for any positive constants, A and u,

lubyy(By @ Ap~1By) luby, (C; ® A 1uC,)
=max {lub;,(B; @ 0), Au~1ub,(0 @ B,)} x max {luby, (C; ® 0), A-1xlub,, (0 @ C,)}.

This yields the required result if A and p are defined as follows:

A =lubyy(B, @0), p=1luby(0® By), if B, #0,

A =luby (0@ Cy), =1luby(C, ®0), if Cy+0,

A=pu=1, if B,=0, C,=0.
CoRrOLLARY 3.9. With the same conditions as in lemma 3.8, there exists D € &, such that
lub,(DB) lub,, (CD-1) = max {lub;,(B; @ 0) lub,,(C; @ 0),lub,(0 ® B,) lub,, (0 @ Cy)}.
Lemma 3.10. Let |||, = &"(.), || |2 = ££(.), and let

_[B G _[G nh
A A vl &

be m xn, nxm matrices, respectively, where By, C; are kx/[, [ xk, respectively, 1 < k < m,

1<l<n and
lubyy(B; @ 0) luby, (C; @ 0) > lub,,(0 @ By) luby, (0 @ C,). (29)

Then there exist D€ 9,,, D,€ D, such that
lub,, (D) BD,) luby; (D51 CD;Y) = lubyy(By @ 0) luby, (€, @ 0). (30)
Proof. Let D, = 1, @ AL,_;,, Dy = L @ p~'I,_;, where A, # > 0. Now, since
luby,(B) = n;ax (e®| B));,

lubyy(B) = max {lub,(B; ® 0),lub,,(U*+ (0 ® B,))} (31)
where U* = B— (B, @ B,). Therefore, by (31),
lubyy (D, BD,) = lub,(B, @ 0) (32)

if
lubyy(B; @ 0) > lubyy(4~tU* +u~1A(0 ® By)).

This inequality certainly holds if

pulubyy(By @ 0) > luby,(U*) + Aluby,(0 @ B,). (33)
Similarly,
luby, (D51CD7Y) = lub,, (C; @ 0) (34)
if
Alubyy (C; @ 0) > luby, (V*) + plub,, (0 @ Cy), (35)

where V* = C~ (C; @ C,). Now let
B1=1uby(B, ®0), f,=1uby,(0® B,), o =lub,(U*),
v1 = luby (C; @ 0), v, =1luby(0® C,), 7 =Iluby(V*).
It is easily verified that the set
LA py|A,p>0 and pfy 2 o0+A8, and Ayy > 7+ wy,}

is non-empty by virtue of (29). Thus there exist A, # > 0satisfying (33) and (35), so the result (30)
follows immediately from (32) and (34). This completes the proof.
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A corresponding result for the /,(.) norms holds for matrices having the form of the transposes
of those in (28).

3.3. The S properties

In this subsection it is shown that, as mentioned at the end of §2, properties 8,, and S}, hold
for appropriate pairs of /,-norms.

Lemma 3.11. Let 4 be a non-negative m x # matrix with K(4) connected, and let # and s be
non-negative m and z vectors, respectively. If the zeros of AT and s coincide, and also the zeros
of As and r, then r and s are either both zero or both strictly positive.

Proof. If r = 0 then clearly s = 0, and conversely. So assume that both are non-zero.
If r > 0 then, as K(4) is connected, ATr > 0 and thus s > 0. Conversely, if s > 0 then r > 0,
so assume that r, s > 0. Now let P and Q be such that

a

rIP = [FT0], Qs = [z] (36)
where # and § are positive £ and [ vectors, respectively, with 0 < £ <m, 0 < [ < n. Also, let

PTAQ — [An jm], <37)
21 22

where 4,, is £ x . Using (36) and (37), it then follows from the coincidence of the zeros of ATr

and s that #T4,, = 0, which implies that 4,, = 0. Similarly, the coincidence of the zeros of 4s

and r yields 4y = 0, which contradicts the connectedness of K(4).

CoroLLARY 3.12. Let 4 be a non-negative m x n matrix with K(4) connected, and let ||. |, and
[ .|z be norms with the property that any dual pair of vectors has coinciding zeros. Then every
pair of non-negative vectors, y* and &, satisfying

¥'[liAx and yTA|, %, (38)
is strictly positive.
Progf. The zeros of ATy and & coincide, as do those of y and A4, so the result follows by the
lemma, as ¥ and y cannot be zero.
I't can be shown that norms which are both strongly monotonic and have strongly monotonic
duals satisfy the conditions of corollary 3.12. In particular, corollary 3.12 holds for | .||, = i2(.),
[]2= lgg(')’ 1 < py,pp < 0.

CororrARy 3.13. Let 4 be a non-negative square matrix with G(A4) connected, and r, s non-
negative vectors for which the zeros of r, s, ATr and A4s all coincide. Then r and s are either
both zero or both strictly positive.

Proqgf. Since the zeros of r and s coincide, it follows that @ = P in (36), which yields the result.

Lrmma 3.14. Let 4 be a non-negative matrix with K(4) connected, then 44T is irreducible.

Proof. Suppose that AAT is reducible, then there exists P such that PTAATP = F, @ F,, where
F, and F, are square and non-vacuous. Since K(4) is connected 4 has no zero rows or columns,
so, by lemma 4.5 (proved in the next section), there exists @ such that PTAQ = 4, ® A4, with
4, and 4, non-vacuous. This contradicts the connectedness of K(4), so A4 must be irreducible.

This result can also be proved using theorem 2.1 of Hartfie] & Maxson (1975).
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LemuMA 3.15. Let 4 be a non-negative m x n matrix with K(4) connected, and let ||. |, and ||. ]|,
be absolute norms with the property that any dual pair of vectors has coinciding zeros. Then, up
to constant multiples, every maximizing pair of vectors for lub,,(4) is strictly positive.

Proof. Let wH, z be a maximizing pair for lub,,(4), then
lubyy(A) | wH [P 2] = |wHAz| < [w]*4]z]. (39)

Thus, as the norms are absolute, it follows that equality must hold in (39), and that [w|%, |3| is
also a maximizing pair for lub;y(4). Now, by (13), T = |w|T and & = |z| satisfy (38), so by
corollary 3.12 |w| and |3| are positive. Consequently, since equality holds in (39),

arg (w;z;) = v, Vi,j such that a; >0, (40)

where v is a constant, As K(4) is connected, it follows from lemma 3.14 that 44" is irreducible,
so for any i, k there exists a sequence of positive elements of 4:

Gijp By Firjp Yagy Hygor 0> Yigrip Uejre
Thus, by (40), arg (w;) = arg (wy,), so w is a constant multiple of a positive vector, and similarly
so is z.

The following lemma is a generalization of part of the proof of theorem 2 of Stoer & Witzgall
(1962).

Lemma 3.16. If ||.||; = Im(.) and ||.[l, = 3(.), 1 < p < oo, then, for any non-negative m x n
matrix 4 with X(4) connected, there exists, up to positive multiples, a unique pair of positive
vectors YT, & satisfying (38).

Proof. The norms ||.||; and | .|, satisfy the conditions of lemma 3.15, so 4 has a positive
maximizing pair yT, ¥ which, by (13), satisfies (38). By using (7) this implies that, for some
a, >0,

Ax = ayi?, ATy = paria, (41)
exponentiation of vectors being elementwise. The replacement of # and y by some multiples
of themselves yields (41) with two new constants, & and £, which satisfy

{la ﬁ’)‘lm = qllaplp = Alq

where AY2 > 0 is a constant independent of the multiples chosen. Now replace & by a suitable

multiple so that & = A, § = 1, i.e.
Ax = Aya?, ATy = xpla, (42)

Scaling # and y simultaneously, it is seen that, for any y > 0, y?x and y?y also satisfy (42).
Now suppose that (42) has two solutions, ¥ > 0,y > 0,1 > 0and ¥ > 0, > 0, X > 0, where

A < A Scaling & and y with
X)llq (gi)ll'p
=|5) xmax|Z
4 (A i \Ys

A(x—F) = Ay?? —2gar > 0, (43)

the new & and y satisfy

with equality for at least one component. Since A < 4, it follows from (43) that y > §, with
y > $ifA < A, and thus, from (42), that & > #.Ify > j then, as K(4) is connected, 4™ (y —F) > 0
and thus, by (42), ¥ > %. Similarly, if ¥ > ¥ then A(x¥ —¥) > 0 which contradicts (43). Therefore
> X, Y+ P,50A=A
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Now, letting r = y —§, s = & — X, the conditions of lemma 3.11 apply, by (42), so r and s must
both be zero. Thus the solution of (42) is unique up to positive multiples.

CoroLLARY 3.17. Let || ||y, || . |2 and 4 be defined as in the lemma. Then, if y* and & are posi-
tive and satisfy (38), they are a maximizing pair for lub,,(4).

Proof. This follows directly from lemma 3.16 on using lemma 3.15 and (13).
Before obtaining property Sy, for the /,-norms for general p, properties S;, and S,, are estab-
lished for p = 1 and co.

Lemma 3.18. Property S;, holds for ||. ||, = I%(.), ||| = %(.).

Proof. Let 4 be any positive m x n matrix, and y*, ¥ any pair of non-zero non-negative vectors
satisfying (38). Then, from (9), for all i,

y;(A4%); = y;max (4%),, (44)
k
(¥yT4);x; = (y*4), max x,. (45)
k

Now, since 4 > 0, y"4 > 0, and thus (45) implies that ¥ = fe, where £ = max x, = | | ,. There-
. k
fore, by using (44),  y4x = 3y, max (4%), = |y"|P | 4] max (de),.
i k k

The result then follows since max (4e),, = lub,,(4).
k

CoroLLARY 3.19. Property S;, holds for ||. ||, = &*(.), || [ = &(.).
LemMA 3.20. Property 8;, holds for ||.|; = i%(.), ||. ]2 = {%(.).

Proof. Let A be any non-negative m x n matrix, and yT, & any pair of positive vectors satisfying
(38). Then (44) and(45) hold for all 7, by (9). Now y* > 0, so Ax = {e, where { = max (4«),,
k

by (44). Therefore yTAx = {yTe = {|y"|P. (46)

If Ae;, the jth column of 4, is non-zero then (y*4); > 0, so x; = maxx, = ||, by (45). Thus
k
[ %], de = || %], X de; = ijjAej = Ax = Le.
J
Now lub,,(4) = max (4e);, so { = lub,,(4) | %], from which the result follows by (46).
k

CoroLLARY 3.21. Property S}, holds for ||, = Z*(.), | .l = &(.).
Lemma 3.22. Property Sy, holds for ||. [l = 22(.), | .| = &(.), 1 < p < 0.

Proof. If p = 1 or co then the result follows from lemma 3.20, so it is assumed that 1 < p < oo.
Let A be any m x n non-negative matrix. If 4 has zero rows or columns it follows from (7) that
there is no pair of positive vectors satisfying (38), so the result holds trivially. So assume that 4 has
no zero rows or columns, and let P and @ be such that

PTAQ=A1®A2®-..(‘BAt, (47)

where K(4,) is connected for each i. Let y™ and & be any pair of positive vectors satisfying (38),
and let TP and QT be partitioned conformably with (47) so that

Xy
X
Y'P =[yfyf ... ¥f], QTx=|""]

Xy


http://rsta.royalsocietypublishing.org/

AL A

'\
J= \

o
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

X

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

OPTIMALLY SCALABLE MATRICES 323

Now, by (7), the dualities given by (38) imply the existence of @, # > 0 such that (41) is satisfied.
Since exponentiation is componentwise, this yields

Ay = ayle, ATy, = pafle (1<i<i). (48)
From (48) it immediately follows that
¥l Ax, and yPAls (1<i<1),

where the dualities are with respect to /,(.) norms of the appropriate dimensions. Hence by
corollary 3.17 y7, #; is a maximizing pair for 4; with respect to /,(.) norms of the appropriate
dimensions.
Replacing & by a suitable multiple yields (42), as before, which, by (48), will also hold for
each of the #;, y; pairs. From (42) it can be deduced that
yrAx = A([y"[P)? = | #[8,
sO
yrAw = (yTAx)e (yTAm) = 2V yT|P | & (49)
Now, similarly, (49) must also hold for each maximizing pair y7 , &, which yields
lub (4;) =AY (1 <i<t), (50)

where the lub norms are, again, with respect to the appropriate /,(.) norms. However, from
corollary 3.7 and lemma 3.3, it follows that
lub,,(PTAQ) = max {lub (4,)},
1<i<t

since it is easy to see that any pair of norms /5(.), I,(.) has property L. [See §6.] Thus
lub,,(4) = AYg, by (11) and (50). It then follows from (49) that y*, ¥ is a maximizing pair for
lub,,(4), which completes the proof.

TrEOREM 3.23. Property Si; holds for ||. |, = I2(.), | .|s =(.), 1 < p < .

Proof. Let A = P(4, ® 0) QT be a non-negative m x n matrix, with 4, being kx/, 1 <k <m,
1 </ < n, and let y, and #, be positive vectors in X, and X, respectively, such that

Y= @0)P" and &=Q(x®0)
satisfy (38). Now A& = P(4,%, @ 0) and y*4 = (y{ 4, @ 0) @7, thus, by using (7), (8) or (9),
the dualities (38) imply that yT||; 4,4, and yT 4, ]|, ¥, where |.[s =(.) and ||.[, = I}(.).
Therefore, by lemma 3.22, yT, #, is a maximizing pair for lubg,(4,), so

yid,x,  yTdx
A EN A ES

However, since ||. || is subspace monotonic, luby,(A4) = lubg,(4,) by lemma 3.3. This, together
with (51), implies that T, ¥ is a maximizing pair for lub,,(4), which completes the proof.
Finally, in this section, the following theorems, used in the sequel, are stated.

lub,,(4,) = ” (51)

TuEOREM 3.24. For any absolute norm |.|, given two positive vectors y and & in X,,
there exists D € 2,,, unique up to positive multiples, such that yTD| D~1«.

The proof of theorem 3.24 can be found in Stoer & Witzgall (1962). Several generalizations
of this result have subsequently been obtained, in particular the following theorem (Gries &
Stoer 1967):

40 Vol. 287. A.
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THEOREM 3.25. For any absolute norm ||. ||, given a pair of non-zero non-negative vectors y
and & in X, with coinciding zeros, there exists De 2, such that yTD|D-'x. Moreover, the
diagonal entries of D, d;;, for which y,, x; = 0 are arbitrary positive numbers, and those for which
Y4 %; > 0 are uniquely determined to within a positive multiple.

This theorem can also be obtained by using theorem 2 of Zenger (1968), for an absolute norm.
In fact, Gries & Stoer prove theorem 3.25 for a somewhat larger class of norms, namely orthant—
monotonic norms, and they also extend theorem 3.24 to arbitrary norms on R* and orthant—monotonic
norms on C*,

THEOREM 3.26. For any absolute norm | .|| having property S’, given a square matrix
A > 0, there exists D € @ such that lub (D—14D) = p(4).

Actually, Stoer & Witzgall (1962) prove theorem 3.26 only for the /,-norms, but the only use
made of these norms s the fact that they have property S’. In fact, they show that these norms have
property S, and thus, obviously, property S’.

THuEOREM 3.27. For any pair of absolute norms |. |, | .|, having property S', given a pair of
positive matrices B and C, m x n and n x m, respectively, there exist D, € 9,,, D,e 2, such that

luby (D, BD;) lubgy (D5 CD;Y) = p(BC).

Theorem 3.27 is part (i) of lemma I of Bauer (1963). Although Bauer obtains the result only
for square matrices, B and C, the proofis also valid for co-conformable rectangular matrices.

4, COMBINATORIAL RESULTS

This section begins with a number of preliminary lemmas, which are subsequently used to
obtain characterizations of the combinatorial and spectral structure of non-negative matrices
having any of properties Cl, C* and C. These characterizations are then extended to co-conform-
able pairs of non-negative matrices whose products possess any of these properties. It will be seen
in §5 that these results can be used to characterize the structure of various classes of optimally
scalable matrices.

The proof of the following lemma follows directly from the definition of matrix multiplication.

LemMmA 4.1. Let B and C be conformable non-negative matrices such that BC = 0, then
(i) if B has no zero columns, C = 0,
(ii) if C has no zero rows, B = 0.

LemMa 4.2. Let 4 be a non-singular matrix, then the following conditions are equivalent:
(i) A is fully indecomposable,

(ii) |4] |47 is fully indecomposable,

(iii) |4| |47 is irreducible,

(iv) A-1is fully indecomposable,

(v) |471 |4] is fully indecomposable,

(vi) |47 |4] is irreducible.

Proof. 1t can easily be seen that, if 4 is partly decomposable with PTAQ in reduced form, 4-1is
also partly decomposable with @*T4-1P in reduced form. (See proof of corollary 1 to theorem 2
in Fenner & Loizou (1971).) Thus 4 is fully indecomposable if and only if 4-1 is fully indecom-
posable, showing the equivalence of (i) and (iv). As (iv)—(vi) are the same as (i)-(iii) with 4
replaced by 4-! and vice versa, it is sufficient to prove the equivalence of (i), (ii) and (iii). Now,

.o
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since the product of two non-negative fully indecomposable matrices is fully indecomposable
(Fenner & Loizou 1971; Lewin 1971), (ii) follows from (i) and (iv). Since a fully indecomposable
matrix is necessarily irreducible, it only remains to be shown that (iii) implies (i). However, if 4 is
partly decomposable then, by the aforementioned result, PT|A4||4~1| P will be in reduced form,
contradicting (iii).

LemMA 4.3. Let B and C be conformable non-negative matrices such that

F, Z
0 F)
where F| and F, are non-vacuous, F, is square, and either C has no zero columns or F| is non-zero.
Then there exists @ such that
By, By,

ba-[% 5 e[ &

where By, and Cj, are co-conformable and non-vacuous, B;; has the same number of rows as F;,
and C, has no zero rows. If, in addition, B has no zero rows then B,, and Cy, are also non-vacuous.

Proof. Let

BC = [ (52)

B= [zﬂ C=[C, C] (54)

with B, having the same number of rows as ), and C, the same number of columns. Now C; # 0,

since either C has no zero columns or, by (52) and (54), B, C, = F; # 0. Therefore, let @ be such
that

e, - [, (55)

where Cj, has no zero rows and is non-vacuous, but the zero submatrix may be vacuous. Letting

BQ = [gn glz] . Q™C = [Cgl gm] ’
21 22, 22
where these two matrices are partitioned so that B,, and C}; are co-conformable, it follows from
(52) that B,,Cy; = 0, whence lemma 4.1 implies that B,, = 0 as C}, has no zero rows. Thus the
desired form (53) is obtained. If the zero submatrix in (55) is vacuous then so are B, and C,,,
which implies that B has zero rows since By, = 0. Thus, if B has no zero rows, B,, and therefore
C,, must be non-vacuous.

Lemma 4.4. Let B and C be co-conformable non-negative matrices with B having no zero
columns, C having no zero rows, and BC irreducible, then CB is also irreducible.

Proof. Suppose that CB is reducible, then there exists @ such that
F, 2Z
T = M
ercse - [0 1],
where F; and F, are square and non-vacuous. Now C has no zero rows and B no zero columns
so, by applying lemma 4.3 to QTC and BQ, it follows that there exists P such that

B, B C, C
TRO — | P11 Pr2 Top — |‘11 G2
A A (59)
where By, and Cj; are co-conformable and non-vacuous, and so are By, and C,,. From (56) it is
seen that PTBCP is in reduced form which contradicts the irreducibility of BC, therefore CB is
irreducible.
40-2
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Lemma 4.5. Let B and C be co-conformable non-negative matrices, with no zero rows or
columns, such that

BC=F,oF®..0F, (57)
where the F; are all square and non-vacuous. Then there exists @ such that

BQ=B,®B,®...®» B, (58)

QUC=CaC,®...®»C, (59)

where, for each ¢, B; and C; are co-conformable and non-vacuous with B,C; = F,.

Proof. Suppose first that ¢ = 2. Now B has no zero rows and € no zero columns, so by lemma 4.3
there exists @ such that (53) holds with B;; and C;; non-vacuous, and B;;C;; = F; for i = 1, 2.
In the present case Z = 0 in (52), hence (53) implies that By, Cy, = 0 and B;,C,, = 0. As B has
no zero columns neither does By,,s0 Cj, = 0 by lemma 4.1. Similarly, B;, = 0, which yields the
result for ¢ = 2. The result follows for all ¢ by induction.

Lemma 4.6. If 4 is a square irreducible non-negative matrix and & is a positive vector such that
either (i) Ax < p(4) «, or (ii) Ax > p(4) x, then Ax = p(4) .

Progf. This follows directly from theorem 2.2 in Varga (1962).

LemmA 4.7. If 4 is a square irreducible non-negative matrix and & is a non-negative vector such
that, for some o > 0, 4x < ax, then either ¥ = 0, or ¥ > 0 and & > p(4).

Proof. Suppose that 4, ¥ and « satisfy the conditions of the lemma. Then, since 4 is irreducible,
A +1Iis fully indecomposable (Fenner & Loizou 1971), so by theorem 2 of Lewin (1971), if & 0
and & * 0, the number of non-zero components in (4 + 1) ¥ exceeds the number in x. However,
this contradicts (A+1)» < (¢+1) ¥, 50 ¥ = 0or ¥ > 0. If ¥ > 0 then, by lemma 4.6, o > p(4).

Before proceeding to characterize the structure of non-negative matrices which possess
properties Cl, Cr and C, the following theorem, used subsequently, is stated:

THEOREM 4.8. If 4 is a square non-negative matrix and o > p(4), then
al—A isnon-singular and (al—4)"!> 0.

The proof of this theorem can be found on page 83 of Varga (1962).

4.1. The structure of matrices with properties Cl, C* and C
(1) The matrix A

LEmMA 4.9. Let 4 # 0 be a square non-negative matrix. Then there exists a positive vector y*
such that

yrd < p(4) y* (60)

if and only if there exists P such that
A, Z]
4y O z,

PTAP = (61)

: :
0] ’
.



http://rsta.royalsocietypublishing.org/

2
AL A

'\
s
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

Y, g |
A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

OPTIMALLY SCALABLE MATRICGES 327

where, for each i, 4, is a square irreducible matrix with p(4;) = p(4) > 0, and p(4) < p(4)
if 4 is non-vacuous.

Proof. Suppose that there exists P such that PTAP has the form (61), and, for 1 < < ¢, let
¥F > 0 be a left P-vector of A,. If 4 is vacuous then y* = (yfyJ ... yf) PT satisfies (60) as
yT4 = p(4) y*. If 4 is non-vacuous then p(4) < p(4), so, by theorem 4.8, (p(4) I— 4 )~ exists
and is non-negative. If 7 is defined by

t -~
5" = e+ X3 Z) (p(a) 1-2)
i=1
then 7 is positive and satisfies

t
T A+ 3 YPZ; < p(A) F.
i=1

The vector yT = (yfys ... yf §T) PT thus satisfies (60).

Now suppose, conversely, the existence of y* > 0 satisfying (60). Since 4 # 0, p(4) > 0 by
(60). Let P, be such that P AP, is in normal form (Varga 1962, p. 46), and let 4, be the last
diagonal block having spectral radius p(4), so 4, is irreducible as p(4) > 0. Then P§f AF, may

be partitioned as
Ull U12 U13
0 Alck U23 ’ (62)

R A

Py AP, =

where the diagonal blocks are square, and if U,y is non-vacuous p(Us) < p(4). If Uy, is vacuous
then (62) is already in the form (61) with ¢ = 1 and 4, = 4,,, so assume that Uy, is non-vacuous
and let yT P, be partitioned conformably with (62) as (y{ y3 ¥7 ). Inequality (60) thus implies that

yirUv]Z+y2TAkk < p(A) yél‘ (63)

By using lemma 4.6, (63) implies that yT 4, = p(4) y3, therefore y{ Uy, = 0, so Uy, = 0. Thus,
if P, interchanges the first and second row and column blocks of (62),

Alclc 0 U23
PIPFAP,P,=| 0 U, Ug,l. (64)
0 0 U

If p(Uy,) < p(4) then (64) is already in the form (61) with ¢ = 1 and 4, = 4, otherwise the
above process of decomposition and permutation can be applied to Uy, since Uy, and y{f satisfy
the inequality (60). Repetition of this process must ultimately yield a matrix in the required
form (61).

CoroLLARY 4.10. Let 4 # 0 be a square non-negative matrix. Then there exists a positive
vector & such that Ax < p(4) xif and only if there exists @ such that
4 o
b

4=y 3 (65)

where A is the direct sum of irreducible matrices all having spectral radius p(4) > 0, and
p(4) < p(A) if 4 is non-vacuous.
Proof. This is immediate on applying lemma 4.9. to A7.

CoRrOLLARY 4.11. Let A # 0be asquare non-negative matrix. Then there exists a pair of positive

vectors T, & such that
YA < p(A)y", Ax < p(d) s, (66)
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if and only if there exists P such that

A,

PTAP = * 3 (67)

where, for each i, 4, is a square irreducible matrix with p(4;) = p(4) > 0, and p(4) < p(4) if
A is non-vacuous.

Proof. If PTAP is in the form (67) then (66) follows from lemma 4.9 and corollary 4.10.

If, conversely, there exist positive vectors yT and « satisfying (66), then, by lemma 4.9 and
corollary 4.10, there exist P and @ such that PTAP and QTAQ are in the forms (61) and (65),
respectively. Now the strong components of G(4) are invariant under permutation and must,
therefore, consist of the G(4,), 1 < ¢ < ¢, and the strong components of G(4), in some order.
Moreover, G(4, ® 4, ® ... ® 4;) and G(4) must both consist of just those strong components
which correspond to submatrices having spectral radius p(4). Thus the rows and columns of 4
occurring in 4 are precisely those occurring in 4, ® 4, ® ... @ Ay, 50 Z,,Z,, ..., Z, and W are
all zero, which yields the result (67).

LemMA 4.12. Let 4 # 0 be a square non-negative matrix. Then 4 has property C!if and only
if there exists P such that (61) holds, with the 4; and 4 satisfying the same conditions as in the
statement of lemma 4.9.

Proof. Suppose that there exists P such that PTAP has the form (61), and let
¥ = P(«f &f ... 6T &T)T

be any right P-vector of 4, partitioned conformably with (61). Then

Az = p(4) &. (68)
If 4 is non-vacuous then, as p(4d) < p(4), (68) implies that & = 0. Now, for each i, let yT be
a left P-vector of 4;, which must be positive since 4, is irreducible, and if 4 is non-vacuous
let 7 = tZ ¥f Z,(p(A4) I - A)~1, which must be non-negative since (p(4) I — 4)~! > 0by theorem
4.8. The:;T = (yLy7 ...y PT) PT is a left P-vector of 4, any zero element of which must lie
in §T. Hence 4 has property CL

Now assume, conversely, that 4 has property Cl. Suppose p(4) = 0, then 4 must have at least
one zero column. Let @, be such that

arde =[5 o, (69)

where the first column block in (69) has no zero columns (it must be non-vacuous since 4 # 0),
and 4, is square. Since p(4;;) = 0, 4;; has at least one zero column, so 4,, # 0. Now (0e™)T,
partitioned conformably with (69), is a right P-vector of Qf 4Q,, so by property C! there exists
aleft P-vector yT = (yTy7) of QFf AQ, with y5 > 0. This contradicts 4,, # 0, therefore p(4) > 0.
Let P, be such that P AFy is in the form (62), where again 4, is irreducible, and p(U,,) < p(4)
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if Uy, is non-vacuous. If Uy, is vacuous then Pff AP, is already in the form (61) with ¢ = 1 and
4, = 4,,, so assume that Uy, is non-vacuous. Let & be a right P-vector of 4 having the maximum
number of non-zero components, and, by using property Cl, let yT be a left P-vector of 4 such
that y; = 0 implies x; = 0. Also let y™P, and P& be partitioned conformably with (62) as
(yTy7y3) and (aF &7 «T) T, respectively. If U,y is non-vacuous then &, = 0 since p(Usy,) < p(4).
Now choose R, such that yT R, = (97 0) where ¢ > 0ifit is non-vacuous. If Rf &, is partitioned
correspondingly as (¥T%F)T then, by hypothesis, #, = 0 if it is non-vacuous.

Now letting @, = Fy(R, ® I), correspondingly partition the first row block and column block

of QT 4Q,, so that
Voo Voo Voo Vos
1710 I’ll 1712 1713
QTAQ,=| ¢ o Ay Uyl (70)
0 0 0 U,

Similarly, let yTQ, = (§T0yTyT) and QF » = (570 47 0)T. It is assumed here that each of the
submatrices of (70) is non-vacuous; however, the proof which follows is still valid, with minor
modifications, if this is not the case. It is now shown that

Voo =0, Vp=0. (71)
From (70),

o VoL =0, (72)
95 Voo + ¥ Ay = p(4) ¥3, (73)
V:logo"‘Vlz % =0, (74)
Apy %y = p(4) %, (75)

From (73), i
Y& Ay < p(A) ¥7. (76)

As A4, is irreducible, y7 is either zero or positive by lemma 4.7. Similarly, from (75), &, is either
zero or positive. If 7 > 0 then equality holds in (76) by lemma 4.6, and trivially it also holds
if y7 = 0. Therefore, by (73), 93V, = 0. This and (72) imply that ¥;; = 0 and ¥, = 0, since
HF > 0. If x, > 0 then (74) implies that V], = 0, yielding (71). If 4, = 0 let (¥ #7)™ be a right

P-vector of
i N
0 Akk ’

and let ¥ = ¥+ Q,(0%¥3 0)T. Then # is also a right P-vector of 4, since ¥; = 0 and ¥, = 0,
which contradicts the ‘maximality’ of . Thus &, is non-zero, establishing (71), which implies
that U}, = 01in (62). Now, on defining P, as in lemma 4.9, (64) holds, so if p(Uy,) < p(4) (64) is
already in the form (61) with ¢ = 1 and 4, = A,,. If this is not the case then consider Uy,. It is
easy to see that this matrix has property Cl, since 4 does, so the above process of decomposition
and permutation can be applied to U},. Repeating this ultimately yields a matrix in the required
form (61).

CoroLLARY 4.13. Let 4 # 0 be a square non-negative matrix. Then 4 has property Cr if and
only if there exists Q such that (65) holds with 4 and 4 as in corollary 4.10.

CoOROLLARY 4.14. Let 4 # 0 be a square non-negative matrix. Then 4 has property C if and
only if there exists P such that (67) holds with the 4; and 4 satisfying the same conditions as in
the statement of corollary 4.11.
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Proof. Suppose that there exists P such that PTAP has the form (67), and let
x = P(«T&f ... T &T)T
be any right P-vector of 4, partitioned conformably with (67). Then
A%, =p(d)®, (1<i<i), (77)
A% = p(4) &. (78)
If 4 is non-vacuous then, as p(4) < p(4), (78) implies that & = 0. Similarly, (77) implies that
each &; (1 < ¢ < ?) is either zero or a right P-vector of 4,. For each ¢, let ¥} correspondingly be
either zero or a left P-vector of 4. In the latter case #; > 0 and y7 > 0 as 4, is irreducible. Now,
letting T =0, yT = (yfyT...yfPT) PT is a left P-vector of A, the zeros of which coincide
with those of ¥. Hence 4 has property C.
Now suppose, conversely, that 4 has property C. Certainly 4 has property C! so, by lemma 4.12,

there exists P such that (61) holds, with the 4; and A4 satisfying the same conditions as in the
statement of lemma 4.9. For 1 < ¢ < 4, let &; be a right P-vector of 4;, so x; > 0. Thus

¥ = P(af & ... &T0)T
is a right P-vector of 4, so let yT = (yTy3 ... yf 0)P™ be a corresponding left P-vector of 4 with

t
¥7 >0, 1 <i<t From (61) it follows that 3 y7Z; =0, so Z; =0, 1 <i < ¢, which yields
i=1

the required form (67).

Combining now lemmas 4.9 and 4.12, and similarly for their corresponding corollaries, yields
the following theorems characterizing properties Cl, C* and C.

THEOREM 4.15. For a square non-negative matrix 4 # 0, the following are equivalent:
(i) 4 has property CL

(ii) There exists y* > 0 such that yT4 < p(4) y™.

(iii) There exists P such that (61) holds with the 4; and 4 as in lemma 4.9,

THEOREM 4.16. For a square non-negative matrix 4 # 0, the following are equivalent:
(i) A has property Cr.

(ii) There exists # > 0 such that Ax < p(4) . -

(iii) There exists @ such that (65) holds with 4 and 4 as in corollary 4.10.

THEOREM 4.17. For a square non-negative matrix 4 % 0, the following are equivalent:
(i) 4 has property C.

(ii) There exist T, # > 0 such that yT4 < p(4) ¥y and 4dx < p(4) ».

(iii) There exists P such that (67) holds with the 4, and 4 as in corollary 4.11,

CoroLLARY 4.18. A square non-negative matrix 4 has property C if and only if it has proper-
ties C! and Cr.

Either from theorem 4.17 because of the form of (67), or from corollary 4.18, it follows that 4
has property C if and only if AT also has property C, thus, in the definition of property C the
roles of left and right P-vectors could be reversed.

Cororrary 4.19. If a square non-negative matrix 4 has a pair of positive left and right
P-vectors then 4 has property C.

CoroLLARY 4.20. Let 4 # 0 be a square non-negative matrix. Then 4 has a pair of positive
left and right P-vectors if and only if there exists P such that PTAP is the direct sum of irreducible
matrices all having spectral radius p(4).
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Proof. If A has a pair of positive P-vectors then, by theorem 4.17, (67) holds, and it follows
from the proof of corollary 4.14 that A must be vacuous. The proof in the opposite direction is
immediate.

(ii) The product BC

In this subsection the structure of pairs of co-conformable non-negative matrices, B and C,
whose products BC and CB both have property Cl, C* or C, is examined. It is first shown that, in
certain circumstances, if one of the products has one of these properties then so does the other.

LemMmA 4.21. Let B and C be co-conformable non-negative matrices with B having no zero
columns, C having no zero rows and BC having property Cl, then CB also has property CL

Proof. Since B has no zero columns and C # 0, BC # 0 by lemma 4.1. Thus BC satisfies the
conditions of theorem 4.15 (i), so there exists P such that

PTBCP = [F Z],

0 F
where P=F, ® F,® ... ® F, with the F,irreducible matrices all having spectral radius
p(BC) > 0, and p(F) < p(BC) if Fis non-vacuous. Now F # 0 so, if F is non-vacuous, applying
lemma 4.3 to PTB and CP implies the existence of ¢ such that (56) holds with B;; and Cy; co-
conformable and non-vacuous, By, Cy; = F, and C;; having no zero rows. Since B has no zero
columns neither does B,,, and as F is the direct sum of irreducible matrices it has no zero rows or
columns, so B;; has no zero rows and C}; no zero columns.

If #'is vacuous then let By, = PYB, C;; = CP, which again can have no zero rows or columns.
Therefore, in all cases, B;; and Cy, satisfy the conditions of lemma 4.5, so there exists R such that

B,R=B,®B,®..® B, (79)
RCy=C@®C,®...®C, (80)

where B;C; is irreducible and p(B;C;) = p(BC) (1 <i <t). Now, for each 7, B; has no zero
columns and C; no zero rows, so C; B, isirreducible by lemma 4.4. Thus, from (79) and (80), it is
seen that RTC,,B,, Ris thedirect sum of irreducible matrices all having spectral radius p(BC) > 0.
If F'is non-vacuous, by using (56), itis now clear that (R* @ I) QTCBQ(R @ I) has the form (61);
similarly, if #is vacuous, RTCBR has this form, and thus in either case CB satisfies the conditions
of theorem 4.15 (iii). Therefore CB has property CL.

CoROLLARY 4.22. Let B and C be co-conformable non-negative matrices with B having no
zero columns, C having no zero rows and BC having property C*, then CB also has property Cr.

Proof. Since CTBT has property Cl, lemma 4.21 implies that BTC™T also has property Cl
this yields the result.

CoroLLARY 4.23. Let B and C be co-conformable non-negative matrices with B having no
zero columns, C having no zero rows and BC having property G, then CB also has property C.

Proof. This is immediate from lemma 4.21 and corollary 4.22 on using corollary 4.18.

LeMMA 4.24. Let B and C be co-conformable non-negative matrices for which BC and CB are

both non-zero and have property Cl. Now let P and @ be permutation matrices (whose existence
is guaranteed by theorem 4.15) such that

F z ﬁw]’

PTBCP=[O F] QTCBQ=[O Ju (81)

41 Vol. 287. A.
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where N
F=FoF®..®F, A=HoH,®..®H,

with F; (1 <i<3s) and H; (1 <j <) all being irreducible matrices having spectral radius
p(BC); p(F) < p(BC) if Fis non-vacuous, and p(H) < p(BC) if H is non-vacuous. Then

rae-[2 4. [0 3.

where B has the same number of rows as Fand the same number of columns as H, and conversely
for . In addition, B and C have no zero rows or columns.

Proof. Let

(82)

B U ¢
T — 1 T — 1
ro- |y, 3 eor=[g ol
where Bhas the same number of rows as Fand the same number of columns as A, and conversely
for C, so possibly U, or B, or both, could be vacuous. Note that B, and ¥; are non-vacuous if and
only if F'is non-vacuous, and C; and U, are non-vacuous if and only if H is non-vacuous. Since all
the matrices involved are non-negative it follows from (81) and (83) that

(83)

BO+uC, =T, (84a)
0B+V,B, = H, (84b)
B, V;+BC =F if Fis non-vacuous, (85a)
C,U, +CB = H, if A is non-vacuous, (855)
B,C =0, if Fis non-vacuous, (86a)
C,B =0, ifHisnon-vacuous. (864)

If Fis vacuous then ¥, B, and CB in (845) and (854), respectively, should be taken as zero, and
similarly for U; C, and BC'in (844) and (85a), respectively, if H is vacuous.
Now, if # is non-vacuous, by (855) and theorem 2.8 in Varga (1962),
p(F) = p(BC) > p(H) > p(C, 1) = p(U,Cy).

It therefore follows from (844) that BC # 0, and obviously this also holds if H is vacuous.
Suppose first that Fis non-vacuous; so by using (86a)

[B][O AN [EO EVI]'

B, 0 Bl
Thus, since BC # 0, by lemma 4.3 there exists R such that
B By, By, c, C
- T — b L2
AL W MR e 87

where B,; and Cj, are co-conformable and non-vacuous, and Cj, has no zero rows. Suppose that
B,, and Cy, are non-vacuous, then from (87), by using (845),

C,B,, C,B,,+C,B
RTﬁR=[ 11 P11 11 P12 12 22].
0 022322

Since the H; are all irreducible and have spectral radius p(BC), it follows that
p(Cu1 Byy) = p(Coa Byy) = p(BC). (88)
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Now, from (85a) and (87), F > B,V; = B,,Cj,, 5o again by theorem 2.8 in Varga (1962),

p(BC) > p(F) 2 p(BayCas) = p(Caz Bua),
which contradicts (88). Accordingly B,, and C,, must be vacuous, and (87) reduces to

[§I]R= [BJI], R0 V] =[Cy Cyl.

Thus € has no zero rows and B; = 0 ,whence (845) implies that B has no zero columns.

Now consider the case when F'is vacuous. Equation (8454) reduces to OB = A, so again C has
no zero rows, B no zero columns, and B, is, vacuously, zero.

By symmetry between B and C it follows similarly that B has no zero rows, C no zero columns,
and C, = 0 if it is non-vacuous, which completes the proof.

A corresponding result holds if BC and CB both have property C*, and the analogous result for
property G is given by the following lemma.

Lemma 4.25. Let B and C be co-conformable non-negative matrices for which BC and CB are
both non-zero and have property C. Now let P and @ be permutation matrices (whose existence is
guaranteed by theorem 4.17) such that

F o a o
T = - T =
PTBCP = [0 F]’ QTCBQ [O H]’

where P, B, Fand H satisfy the same conditions as in lemma 4.24. Then

PTBQ = [f 1%], QTCP = [g 09],

where B and O satisfy the same conditions as in lemma 4.24.

(89)

Proof. By lemma 4.24, PTBQ and QTCP satisfy (82), and B and € have no zero rows or columns.
Moreover, theorem 4.17 implies that W and Z are zero in (81) if they are non-vacuous. Then,
from (82), BV, = 0if ¥, is non-vacuous, and OU, = 0 if U, is non-vacuous. It thus follows from
lemma 4.1 that U, and V] are zero if they are non-vacuous, which completes the proof.

It is noted that if BC is non-zero and has any of properties C!, C* and G then p(BC) > 0 by
theorems 4.15, 4.16 and 4.17, respectively, so CB is also non-zero. Thus the condition that CB
be non-zero in lemmas 4.24 and 4.25 is redundant. These lemmas are now used to characterize
the structure of B and C given that BC and CB both have property C or CL

THEOREM 4.26. Let B and C be co-conformable non-negative matrices such that BC # 0.
Then BC and CB both have property C if and only if there exist P and @ such that

'3, o c, ]
B, O C, @)
PTBQ = . 0|, ewcr = . Ol
0] . 0] )
.................. Be . .
| o) : i o) C |
(90)

where, for each ¢, B; and C; are co-conformable, B,C; and C,; B; are irreducible matrices having
spectral radius p(BC), and p(BC) < p(BC) if B and € are non-vacuous.
41-2
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Proof. Suppose B and C can be put in the form (90) satisfying all the required conditions.
If B and € are non-vacuous then by (90) PTBCP has the form of (67), and theorem 4.17 implies
that BC has property C. If B and  are vacuous then

B,C,® B,C, @ ... ® B,C,, if B has no rows,

T - >
PIBCP = {BIC'1 ® B,C, @ ... ® B,C, ® 0, if Bhas no columns.

In both cases the conditions of theorem 4.17 (iii) are satisfied so BC has property C. Since B;C; is
irreducible, p(B,;C;) = p(BC) = p(CB) > 0,50 CB # 0. It thus follows similarly, by theorem 4.17,
that CB also has property C.

Now suppose, conversely, that BC and CB have property C. Then, by lemma 4.25, there exist
P, and @, such that (89) holds (with P, Q replaced by P, Q,), where B and C are co-conformable
and have no zero rows or columns. Furthermore,

BC=F,oF®..®F,

where each F;isirreducible and p(F;) = p(BC). Also, if Band Care non-vacuous p(BC) < p(BC).
Now B and C satisfy the conditions of lemma 4.5, so there exists R such that

BR=B, ®B,®...®B, RC=0C0Cd..®C,

where B; and C; are co-conformable, and B;C; = F;. Now B; and C; have no zero rows or columns,
so C; B, is irreducible by lemma 4.4. Letting P = P, Q = Q,(R @ I), the result then follows.

If B and C are square and essentially non-singular (Fenner & Loizou 1977) then all the B, and
all the C; will also be square and essentially non-singular. This follows from the following
corollary.

Cororrary 4.27. If B and C are as in theorem 4.26, and, furthermore, they are both square
and at least one of them is essentially non-singular, then B; and C, are square, for each 1.

Proof. Without loss of generality it may be supposed that B is essentially non-singular. Let
Bben x nthen, by the Frobenius-Kénig theorem (Mirsky & Perfect 1966), Bhasnok x (n—k+1)
zero submatrix, 1 <k <z From the form of (90) it, therefore, follows that, for each i,
B, ® B, ® ... ® B; must be square, which yields the result.

For the special case B = |4|,C = |47!|, where 4 is an arbitrary square non-singular matrix,
a more specific structure for 4, than that given by theorem 4.26, can be obtained by using the
fact that any non-singular matrix is necessarily essentially non-singular.

THEOREM 4.28. Let 4 be a non-singular matrix, then |A4| |4-1| has property C if and only if
there exist P and @ such that

PTAQ = (91)

where, for each 7, 4; is a square fully indecomposable matrix, p(|4;| |473|) = p(|4]||47Y|), and
p(|4]|471]) < p(]4] |472|) if 4 is non-vacuous.
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Proof. Suppose there exist P and @ such that PTAQ has the form (91). Then |4, |4;!| and
|A73!| |4;] are irreducible by lemma 4.2, so theorem 4.26 implies that |4| |4~1| has property C.

Conversely, suppose that |4| |4-1| has property C. Then, by corollary 4.23, | 41| |4] also has
property C, so |4| and |4-!| satisfy the conditions of theorem 4.26. Thus there exist P and @
such that (90) holds with B = |4| and C = |4~1|. Furthermore, for each ¢, B; and C, are square
by corollary 4.27. Therefore, PTAQ has the form (91) where B; = |4,| for each ¢, and B = |4|.
Each 4;, and 4, must benon-singular, so C; = |4;!| for each i, and ¢ = |4-1|. For each
i, |4, |47 is irreducible so, by lemma 4.2, 4, is fully indecomposable, which completes the
proof.

Results for property Cl, analogous to those of theorems 4.26 and 4.28 for property C, are now
obtained.

TrEOREM 4.29. Let B and C be co-conformable non-negative matrices such that BC # 0.
Then BC and CB both have property Clif and only if there exist £ and @ such that

[ B, U] [Cy 4
B, 0] Uy Gy 0] v
PTBQ = , QTCP = ‘ s (92)
o) . o) : :
B U Gi W
(@) B] i o) 0]

where the Bj, the C;, B and C'satisfy the same conditions as in theorem 4.26.

Progf. The proof is exactly analogous to that of theorem 4.26 but uses theorem 4.15 and
lemma 4.24, where theorem 4.26 relies upon theorem 4.17 and lemma 4.25, respectively.

CoroLLARY 4.30. If B and C are as in theorem 4.29 and are, in addition, square and essentially
non-singular, then B, and C; are square and essentially non-singular, for each .

Proof. Let B and C be n x n, then neither B nor C can have a k£ x (n—k+ 1) zero submatrix,
1 < k < n. Therefore, since B, ® B, ® ... ® B; and C;, ® C, ® ... ® C; are co-conformable
for each i, it follows from the form of (92) that they must both be square, which yields the
result.

THEOREM 4.31. Let 4 be a non-singular matrix, then |4] |4~!| has property C! if and only if

there exist P and @ such that
4, Z]

A2 O Z2
PTAQ = : .
Ay Z,

9 4

where the 4; and 4 satisfy the same conditions as in theorem 4.28.

Proof. The proof is exactly analogous to that of theorem 4.28 but uses theorem 4.29, corollary
4.30 and lemma 4.21, where theorem 4.28 relies upon theorem 4.26, corollary 4.27 and corollary
4.23, respectively.
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Corresponding results to those of theorems 4.29 and 4.31 hold for BC and CB, or |4| |47,
having property C*.

5. MAIN RESULTS

This section begins with some simple results which give the values of the minimal condition
numbers ¥(.) and «(.) in certain special cases, and bounds on them in other cases.

5.1. Minimal condition numbers

TuEOREM 5.1. If 4 is a square matrix and has c.b.s.d. then, for any absolute norm |. | with

property S,
¥ (4) = p(|4]).

Proof. Since |.| is absolute and 4 has c.b.s.d., by (24), letting B = |4], it is seen that it is
sufficient to prove that y/(B) = p(B) for B > 0. Let 4 > 0 have the same dimensions as B, then
by (19), for any D,

¥ (B) < lub (D-'BD) < lub (D-Y(B+4) D).
From theorem 3.26 it follows that there exists D such that lub (D-1(B+4) D) = p(B+4), so
¥ (B) < p(B+4). Thus, letting 4 0 yields the result by (17) and the continuity of the eigen-
values (Ostrowski 1966).

CoroLLARY 5.2. For any square matrix 4, and any lub-absolute norm with property §’,
¥(4) = p(|4]).
By using (21), theorem 5.1 yields the following:

CoroLLaRY 5.3. For any square matrix 4, and any absolute norm with property S’,
p(l4]) = ¥(4) > p(4).
The following results for the two-sided case are slight generalizations of results in Bauer (1963).

THEOREM 5.4. If B and C are co-conformable matrices and have c.b.s.d. then, for any pair

of absolute norms with property S’,
kio(B; C) = p(|B||C|).

Proof. By (25), it is again sufficient to prove the result for B,C > 0. Let 4 > 0 have the same
dimensions as B, then by using theorem 3.27 and (19) it follows, as in the proof of theorem 5.1,
that x;,(B; C) < p((B+4) (C+47)). So, letting 4 > 0, the result follows immediately by (18)
and the continuity of the eigenvalues.

CoroLLARY 5.5. For any co-conformable matrices B and C, and any lub-absolute pair of
norms with property S', ky,(B; C) = p(|B| |C]).

By using (22), theorem 5.4 yields the following corollary:

CoroLLARY 5.6. For any co-conformable matrices B and C, and any pair of absolute norms

with property S’,
p(|B|1C]) = k1a(B; C) = p(BC).

5.2. Optimal scalability for similarity scaling

Various necessary and sufficient conditions for optimal scalability in sense (I) are now
established. Certain results of Strém (1972) are then shown to be special cases of these, and some
of his results are extended.


http://rsta.royalsocietypublishing.org/

AL A

'\
J= \

o
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

Y o ¥

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

OPTIMALLY SCALABLE MATRICES 337

THEOREM 5.7. Let | . | be a norm having properties L and S*, and let 4 be an z x n non-negative
matrix having property C, then there exists D € &, such that

lub (D14D) = p(A).

Proof. If A = 0 the result holds trivially, so assume 4 # 0. By theorem 4.17 there exists P such
that

4 o

TAP =
PTAP = [ ‘ J] ,
where 4 is a k x k matrix which is the direct sum of irreducible matrices all having spectral radius
p(4),and p(d) < p(4) if Ais non-vacuous. So, by corollary 4.20, let §T and & be a pair of positive

P-vectors of 4, and let R
yT =[§70]PT, x=P m (93)

By theorem 3.25 there exists D = P(D @ D) PTe9,, where D is an arbitrary matrix in 9,_,,
such that

y*'D | D «. (94)
Now let vT = yTD, u = D-'x, B = U(4 @ 0) U-%, where U = D-P, then
Bu =p(4)u, vTB =p(A4)v". (95)
Hence, (94) and (95) imply
vT|u, vT|Bu, vTB|u. (96)

By using property S* it can be seen that T, ¢ is a maximizing pair for B, i.e.

vTBu
W ) = [T
On using (95) and (96), this yields R
lublU(4 @ 0) = p(4). (97)
If 4 is vacuous then (97) yields the desired result, otherwise by theorem 5.1 y(P(0 @ A) PT)
= p(P(0 @ A) PT) = p(d), so there exists De D,,_,, such that

lub(D-1P(0 @ A) PTD) = lub¥¥ (0 @ 4) < p(A). (98)

Thus, by using corollary 3.7 and lemma 3.1, it follows from (97) and (98) that lubU?(4 @ 4)
= lub(D-14D) = p(A4). This completes the proof.
By using corollary 4.20 the above proof yields the following corollary:

CoRrOLLARY 5.8. Let ||.| be an absolute norm having property 8, and let 4 be an z x » non-
negative matrix having a pair of positive left and right P-vectors, then there exists D e 2, such
that lub(D-14D) = p(4).

It is noted that theorem 5.7 and corollary 5.8 hold for all /,-norms by virtue of theorem 3.23
and lemma 3.22.

THEOREM 5.9. Let ||.|| be a strongly monotonic norm, and let 4 be an z x n non-negative
matrix for which there exists D € &, such that
lub(D-14D) = p(4), (99)

then 4 has property CL.
Proof. If p(A4) = 0 then (99) implies that 4 = 0, so 4 has property Cl, trivially. Hence it is
assumed that p(4) > 0.
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Let @ be such that QTAQ is in normal form (Varga 1962), so the diagonal blocks of Q4@ are
either irreducible or 1 x 1 zero matrices, and all have spectral radius not exceeding p(4). Now
let V be any diagonal block which is irreducible and has spectral radius p(4) > 0. Then QTAQ
may be partitioned as

l]].l U12 U13
QUAQ=|0 V Uy, (100)
0 0 U,

where Uy, is either a square submatrix or is vacuous, and similarly for U,,.

Now let De%, satisty (99), and let QT"DQ be partitioned conformably with (100) as
D, ® D, ® D,. It is now shown that if U, is non-vacuous then it must be zero. For suppose that
Uy, # 0, and let &, > 0 be a right P-vector of V, with «, partitioned conformably with (100),
defined by ¥ = Q(0 @ x, @ 0). Then

DU, %, 0
D-'4x = Q| Dy'Vx, | > Q [p(4) Dyt xy| = p(4) D', (101)
0 0

but the two sides of (101) are not equal as U}, # 0 and &, > 0. Thus, by the strong monotonicity
ofthe norm, | D-24%| > p(4) | D~'x|, which implies thatlub(D-14D) > p(4), contradicting (99).

Therefore U, is either vacuous or zero. Since this is true for every diagonal block of @QTAQ
having spectral radius p(4), it follows easily that, by permuting the row and column blocks of
QTAQ, this matrix can be put into the form (61) with the 4; and 4 therein satisfying the same
conditions as in lemma 4.9. Hence, by theorem 4.15, 4 has property Cl, which completes the
proof.

CoOROLLARY 5.10. Let ||.| be a norm such that ||. [P is strongly monotonic, and let 4 be an
n X n non-negative matrix for which there exists D e &, such that lub(D~14D) = p(4), then 4
has property Cr.

CoROLLARY 5.11. Let || . | be a norm such that | .| and |. | P are both strongly monotonic, and
let A be an z x n non-negative matrix for which there exists D € &, such that lub(D-14D) = p(4),
then 4 has property C.

Itis noted that theorem 5.9, and corollaries 5.10 and 5.11 hold for the /,,-norms with 1 < p < oo,
1 <p<owandl <p < oo, respectively.

By virtue of theorem 5.1, combining theorem 5.7 and corollary 5.11 yields a necessary and
sufficient condition for a non-negative matrix to be optimally scalable in the similarity sense,
(I), with respect to a strongly monotonic norm having properties L and S*, and whose dual
norm is also strongly monotonic.

THEOREM 5.12. Let | . || be a norm having properties L and S*, and such that .|| and ||.|? are
both strongly monotonic. A square non-negative matrix is optimally scalable in sense (I) with
respect to || .| if and only if it has property C.

CoRroLLARY 5.13. Let || .|| be as in theorem 5.12. A square matrix 4 having c.b.s.d. is optimally
scalable in sense (I) with respect to ||.| if and only if | 4| has property C.

Proof. This follows directly from theorem 5.12 by using (23) and (24).

These characterizations for optimal scalability in sense (I) hold for the /,-norms, 1 < p < oo.
For p =1 and oo, optimal scalability for arbitrary matrices is characterized by the following
theorem.
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TuEOREM 5.14. Let || .| = ,(.), p = 1 or 0. A square matrix 4 is optimally scalable in sense (I)
if and only if | 4| has property C! for p = 1, or property C* for p = oo.

Proof. Suppose first that p = co. It has been shown by Strém (1972) that there exists De %
such that

lub (D14D) = p(|])
if and only if there exists # > 0 such that |4|# < p(|4|) #. From corollary 5.2, ¥(4) = p(|4]),
so the result follows by theorem 4.16. For p = 1, the result follows by considering A¥ with p = oo.
This completes the proof.

It is easy to see that the characterizations of theorem 5.14 also hold for any norm of the form
[#] = 1,(Dy#), p =1 or 0o, Dye P. Similarly, for norms of this form with 1 < p < oo, corollary
5.13 holds.

Theorems 4.15, 4.16 and 4.17 furnish alternative characterizations to those of theorems 5.14
and 5.12, and, in particular, exhibit the structure of those matrices having properties C!, C*and C,
respectively.

It has been shown by Strém (1972) that, for || .|| = /,(.), a matrix 4 is optimally scalable in the
similarity sense if 4 is the direct sum of irreducible matrices. This result follows immediately
from theorem 5.14, since, by theorem 4.17, |4| has property C and therefore property CF.
Obviously this result also holds for || .|| = /,(.), and, if 4 has c.b.s.d., for any /-norm, 1 < p < oo.
Strém also showed that a companion matrix,

by, by . byy b
-1 0 .. 0 0
-1 .
B - - 0, (102)
@) .
i -1 0]
is optimally scalable in sense (I) for ||. | = #%(.). This again follows from theorem 5.14, since | B

has property C* provided the b; are not all zero. This is proved in the following lemma.

Lemma 5.15. If B is defined as in (102) then
(i) |B| has property C!if and only if 4, # 0.
(ii) |B| has property Cr if and only if b; # 0 for some 2.
(iii) |B| has property C if and only if b, # 0.
Proof. Suppose first thatb,, # 0. By considering G(B) it followsimmediately that Bisirreducible,
so | B| has property C, and thus also properties G! and C".
Now suppose that b, = b,_; = ... = by, = 0, but b, # 0. Partitioning off the first £ rows

and £ columns of B yields
B 0
e[t 5
1= 18, B

where By, is irreducible, By, # 0, and p(B,,) = 0. It follows from theorems 4.15, 4.16 and 4.17
that | B| has property C¥, but neither property C! nor property C.

Lastly, suppose that b; = 0 for all ¢ (1 <7 < n). Now p(|B]) = 0, so theorems 4.15, 4.16 and
4.17 imply that | B| has none of the properties C!, C* and C. This completes the proof.

42 Vol. 287. A.
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Furthermore, in theorem 2 of Strém (1972) it is shown that there exists D such that
lub (D-1BD) = p(|B|), for |.| = &(.). In fact this is only true if b, # 0, as otherwise the
matrix D obtained therein is singular. This result also follows from corollary 5.13 and theorem 5.1
as B has c.b.s.d., and is irreducible for 4, # 0. The following theorem generalizes the above
results.

TrEOREM 5.16. Let ||.|| = /2(.) (1 € p < ). The companion matrix B as defined in (102) is
optimally scalable in sense (I) if and only if 4, # 0 for p # oo, or b; # 0 for some ¢ (1 <7 < n)
for p = 0.

Proof. This follows directly from lemma 5.15 and either corollary 5.13 or theorem 5.14, as
appropriate.

A partial generalization of theorem 5.16 to absolute norms having property S is given by the
following theorem.

THEOREM 5.17. Let ||.| be an absolute norm having property S. If 4, # 0 the companion
matrix B is optimally scalable in sense (I) with respect to ||.|.

Proof. Since B has c.b.s.d., and is irreducible if 4, # 0, the result follows immediately by
corollary 5.8 and theorem 5.1.

5.3. Optimal scalability for two-sided scaling

In this subsection necessary and sufficient conditions for optimal scalability in sense (IV A) are
obtained, and these are then utilized to obtain corresponding results for sense (IV).
The first part of the proof of the following theorem parallels that of lemma I (i) of Bauer (1963).

THEOREM 5.18. Let the pair of norms | .|, ||. ||, have properties L and S*, and let B and C
be m x n and n x m non-negative matrices, respectively, for which BC and CB are non-zero and
both have property C. Then there exist D; € Z,, and D, Z, such that

lub,y(D, BD,) lub,, (D31 CDTY) = p(BC). (103)
Progf. By lemma 4.25, there exist P and  such that

B o c o
ree = gl eer=[7 g,
where Band Care £ x [ and [ x k matrices, respectively, 1 < £ <m, 1 <! < n, with B0 and OB
both being direct sums of irreducible matrices all having spectral radius p(BC), and p(BC) and
p(CB) less than p(BC) if B and € are non-vacuous. So, by corollary 4.20, let $T and & be a pair
of positive left and right P-vectors of BC, then yT and & defined by (93) are left and right P-
vectors of BC. Now, letting p denote p(BC), define

wT = (1/p) y*B, z = Ca, (104)

so the zeros of w and % coincide as B has no zero columns and O'no zero rows, by lemma 4.25, It
is then easily verified that w™ and % are left and right P-vectors of CB, respectively.

By lemma 3.2 the norms | .|, and | . |, both have property L and are thus absolute. Therefore,
by theorem 3.25, there exist D, = P(D, ® D,) PT€ 9, and D, = Q(D, ® D,) QT e 9, - where
D, and D, are arbitrary matrices in 9,,_, and 9, _,, respectively — such that

y'D||, Dy®, wTD,|,D3'z. {105)
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Now let .

B,=UB@o0) V-, ¢, =Vl®o0) U,
where U = D, P and V = D3'Q, then from (104)

B,(D3'2) = pDyw, (yD7) B, = pw'D,,
so by (105)

y'D1 1 Bi(D3'%), (D7) By2 D3tz

Therefore, property S;5 yields

T -1 -1 T
1ub12 (Bl) (y Dl ) BI(D2 Z) Py ol

~ [y™D P03, ~ [y"DTP D5 ]
as (104) implies that P(B @ 0) Q™% = pw. Similarly, it follows from (104) and (105) that
WD, [, C,(Dy %), (wTD,)Cy |y D%,

(106)

so property S3; yields
_ (wD,) Cy(Dy %) _ wTz
WDl 2 [ Dl [ W™Dl | Dy ]y

Thus, by multiplying (106) and (107), and by using (105), it follows that

luby, (Cy)

(107)

lubys(B,) lub,, (C,) = lub¥% (B @ 0) 1ub%y (0 ® 0) = p(BC). (108)
If B and € are vacuous then (108) yields the desired result, otherwise, by theorem 5.4,
k12(P(0 ® B) Q™5 Q(0 ® C) P) = p(P(0 @ BC) PT) = p(BC),
so there exist D, € 9,,_, and D,e 9,,_, such that
luby, (D, P(0 @ B) QTD,) lub,, (D3 Q(0 @ C) P*D7Y) = lub{% (0 @ B) lubt¥ (0 @ €) < p(BC).
(109)

Now, by using lemma 3.1 and corollary 3.9, it follows from (108) and (109) that there exists
D e 2, such that

lub?} (D(B @ B)) lub §7((C © €) DY) = p(BC).
Thus, letting DF = D, PDPT,
lub,(D¥ BD,) luby, (D3 CDY ) = p(BC),
which yields the result.

COROLLARY 5.19. Let the pair of norms ||. [, | .|s be absolute and have property S*, and let
B and C be as in theorem 5.18. Furthermore, let either BC or C'B have a pair of positive left and
right P-vectors, then there exist D€ %, and D,e 2, such that

lubya(D; BD,) luby, (D51CD5 ) = p(BC).

CoOROLLARY 5.20. Let the pair of norms ||. [, [ .||, be absolute and have property S, and let
B and C be as in theorem 5.18. Furthermore, let BC and CB both have pairs of positive left and
right P-vectors, then there exist D, € Z,, and D, € 9, such that

lubys(Dy BD,) luby, (D3 CD5Y) = p(BC).

The above corollaries follow from the proof of theorem 5.18, since if BC has a pair of positive
P-vectors then k& = m, by corollary 4.20, or if CB has a pair of positive P-vectors then / = z; in
either case B and ( are both vacuous. From theorem 3.23 and lemma 3.22 it follows that theorem
5.18 and its corollaries hold for the /,-norms, |. |, = {3'(.), |.[ls = 5(.), for all p.

42-2
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TueoreM 5.21. Let B and C be m x n and n x m non-negative matrices, respectively, and let
[-11 |- |2 be a pair of norms for which there exist D, € 4, and D,e 9, such that
lubyy (D, BD,) luby, (D31 CDTY) = p(BC), (110)
then
(i) if.] is strongly monotonic, BC has property C!,
(i) if .| is strongly monotonic, BC has property CF,
(iii) if[|. |, is strongly monotonic, CB has property Cl,
(iv) if | .|® is strongly monotonic, CB has property Cr.
Proof. Let Dye %, and Dye 2, be such that (110) holds. By the multiplicativity of lub norms

and (16),
lub,, (D, BD,) luby, (D3*CD7Y) > luby, (D, BCDTY) > p(BC), (111)

luby, (D31 CDTY) lubyy(D; BDy) > lubyy(D31CBD;) > p(BC), (112)

so equation (110) implies equality throughout (111) and (112). Therefore, if |.|, is strongly
monotonic, from (111) it follows that BC satisfies the conditions of theorem 5.9 and thus has
property C!. Similarly, if ||. |P is strongly monotonic, BC has property C* by corollary 5.10. The
corresponding results for CB follow from (112) in a similar manner.

In order to obtain necessary and sufficient conditions for optimal scalability in sense (IV A),
it is necessary to look at the requirement of theorem 5.18 that BC and CB be non-zero. If BC
and CB both have property C! then either both are zero or both are non-zero, since if BC is
non-zero then p(BC) = p(CB) > 0 by theorem 4.15. This remark is obviously equally valid
if BC and CB both have property CF or, trivially, property C. Furthermore, if BC = 0 then it is
clear that equation (103) holds if and only if B = 0 or C = 0. If (103) holds and BC # 0 then
obviously p(BC) > 0, so CB s 0. Thus the following necessary and sufficient conditions for
optimal scalability in the two-sided sense are obtained.

THEOREM 5.22. Let the pair of norms | . |4, || . | have properties L and S*, and both be strongly
monotonic with strongly monotonic dual norms. A pair of co-conformable m x n and n x m non-
negative matrices B and C, respectively, is optimally scalable in sense (IV A) if and only if BC
and CB both have property C, and BC = Oonlyif B=0or C = 0.

Proof. This follows directly from theorems 5.18 and 5.21, and the above remarks, by virtue of
theorem 5.4.

CoroLLARY 5.23. Let .|, [|.[, be as in theorem 5.22. A pair of co-conformable m x n and
n x m matrices B and C, respectively, which have c.b.s.d., is optimally scalable in sense (IV A) if
and only if | B| |C| and |C| | B| both have property C, and |B| |C| = O only if B = 0or C = 0.

Proof. This follows directly from theorem 5.22 on using (23) and (25).

It is noted that theorem 5.22 and corollary 5.23 hold for the pair of /,-norms &(.), i(.)
for 1 < p < co. The following results deal with the cases p = 1 and p = oo.

THEOREM 5.24. Let ||.||; = (.), | .| = &(.),p = 1 or oo, and let Band Cbem x n and nx m
non-negative matrices, respectively, for which BC'and CB are non-zero and both have property C!
if p = 1, or property Crif p = co. Then there exist D, € &, and D,e D, such that

luby,(Dy BDy) lubyy (D3* CD7Y) = p(BC).

Proof. Suppose first that p = 1, so BC and CB both have property C!. By lemma 4.24, there
exist P and Q such that (82) holds, where B and C are k x [ and { x k matrices, respectively, with
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BC being the direct sum of irreducible matrices all having spectral radius p(BC), and
p(BC) < p(BC) if B and € are non-vacuous. Now let B* = P(B@ B) QT, C* = Q(0 @ C) PT
then, by theorem 4.17, B* and C* satisty the conditions of theorem 5.18 so, as in the proof of
theorem 5.18, there exist D, € 9, and D, e 2, such that (108) holds, and (109) also holds if Band (
are non-vacuous. Since the norms are symmetric, by virtue of (11), equation (108) can be written
in the form
luby,(D,BD, @ 0) luby, (D3 CD7* @ 0) = p(BC),
and similarly for (109) if B and € are non-vacuous.
Now, applying lemma 3.10 to PTD, BD,Q and QTD3;1CD7'P, there exist D, € Z,, and D,e 9,
such that _ _ _ _
lub,,(D, P™D, BD, QD,) luby, (D31 Q™ D31 CD7PDTY) = p(BC). (113)
Letting D¥ = PD, P™D, and D§ = D,QD,Q", (113) becomes
lub,,(P* D} BDg Q) luby, (Q"DE-*C DI-'P) = p(BC),
and the result follows by (11).
For p = oo the result follows in a precisely analogous manner. This completes the proof.

CoroLLARY 5.25. Let .||, = (.), ||.[le = &(.), p = 1 or co. A pair of co-conformable m x n
and n xm matrices B and C, respectively, is optimally scalable in sense (IVA) if and only if
| B| |C| and |C||B| both have property C! if p = 1, or property CF if p = oo, and |B||C| =0
onlyif B=0orC=0.

Proof. This isimmediate from theorems 5.21 and 5.24, and the remarks preceding theorem 5.22,
by virtue of corollary 5.5, since the pair of norms is lub-absolute.

Clearly, theorem 5.24 and corollary 5.25 extend to pairs of norms of the form

I#ly = B(Do%), [¥]e = L(DFY), DyeZ,, Dfe,, - (114
for p = 1 or co. Correspondingly, for these norms with 1 < p < oo theorem 5.22 and corollary 5.23
hold.

The structure of pairs of matrices satisfying corollary 5.23 or corollary 5.25 is exhibited by
theorem 4.26 or theorem 4.29, respectively.

Ifit is assumed in the statement of corollary 5.23 that B and C have no zero rows or columns,
then optimal scalability may be characterized in terms of either | B| |C| or | C| | B| having property C,
by virtue of corollary 4.23. Lemma 4.21 and corollary 4.22 imply a corresponding result for
corollary 5.25. Under the same assumption, corollary 4.23 further implies that corollary 5.23 also
holds if ||. ||, and ||.||P are strongly monotonic, but not necessarily | .|, and |.||?, or vice versa.
Lemma 4.21 and corollary 4.22 imply a similar resultifjust||. ||, and || . |P are strongly monotonic.

Now, turning to problem (IV), the two-sided scaling of a non-singular matrix, corollaries 5.23
and 5.25 yield necessary and sufficient conditions for the minimal condition number to be
attainable.

THEOREM 5.26. Let |. |4, ||. |5 be as in theorem 5.22 with m = n. A non-singular matrix 4, for
which 4 and 4~ have c.b.s.d., is optimally scalable in sense (IV) if and only if |4| |4~| has
property C.

Proof. This follows directly from corollaries 5.23 and 4.23 as discussed above.

CoroLLARY 5.27. Let the pair of norms ||.||,, ||.||; be absolute and have property S, with

m = n. Let 4 be a non-singular matrix for which both 4 and 4-* have c.b.s.d., and |4| |4-1| has
a pair of positive left and right P-vectors, then 4 is optimally scalable in sense (IV).

42-3
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Proof. Since | 4| |A~1| has a pair of positive left and right P-vectors it has property G by corollary
4.19, and, furthermore, it is easily seen that |4~||4| also has a pair of positive left and right
P-vectors, and thus also has property C. The result then follows by using corollary 5.20.

Again, theorem 5.26 holds for the /,-norms ||.|; = |.|[; = {3(.), 1 <p < 0. For p =1 or oo
the corresponding result is given by the following theorem.

TueoreMm 5.28. Let |||, = |.|2 = 4,(.), p = 1 or c. A non-singular matrix 4 is optimally
scalable in sense (IV) if and only if |4| |4~1| has property Clif p = 1, or property C*if p = co.

Proof. This follows from corollary 5.25 and lemma 4.21 or corollary 4.22.

Itis noted that theorem 2 of Businger (1968) is a special case of theorem 5.28, with his charac-
terization of the optimal D, and D, following from theorem 5.18 and (9).

Again, theorems 5.26 and 5.28 also hold for pairs of norms of the form (114), with m = n.

The structure of those non-singular matrices satisfying theorem 5.26 or 5.28 is given by theorem
4.28 or 4.31, respectively.

6. CHARACTERIZATION OF PROPERTY L

This section, which is devoted to characterizing property L, begins by considering pairs of
l,-norms which have property L;,.

Lemma 6.1, The pair ofnorms ||. ||, = i2(.), || . ||z = ,(.) has property Ly, if and only if p, > p,.
Proof. Since the norms are symmetric, the permutation matrices 2 and ¢ may be omitted in the
definition of property L;,. From the definition of the /,-norms,

%, @ %,y = I5(%, @ xz) =0, ((6:€2)"), (115)
where §; = [[%, ® 0|, = (%, ®0), &= ”0 ® &), = I2(0 @ ¥,) and, similarly,
91 @ yalla = (5,(¥1 D ¥2) = 11202((771772) )> (116)

where 7, = [y; @ 0[]y, 72 = [0 @ Y5 o
Now suppose first that 8 = p,/p, > 1 and let ¥; @ ¥, X,,, y; ® ¥y, € X, satisty

[, @0, < [y @05, [0 @ %y, < [0 D Yol (117)
Letting & = (£, &,)" and n = (7,9,)", the triangle inequality and (117) imply
[2(&732) < EPe 4 ER: < P+ yfe.

Hence, by using (115) and (116), it immediately follows that |%; ® %.]; < |31 @ ¥a[2, thus
property Ly, holds.

Supposing conversely that property Ly, holds, choose #;, %,, ¥; and y,, with &, @ #,€X,,
and y; @ y,€ X,,, such that

[#, @0, =0 @ %5]|; = [, @O = [0 Dyl = 1.
Hence, by property Ly, |#; @ %,y < ||31 @ ¥2/ 2, which, on using (115) and (116), implies that
21py < 21Ps  which yields the result.

CoroLLARY 6.2. The pair of norms (. ), 5 (.) has property L if and only if p; = p,.
Lemma 3.6 suggests a connection between pairs of norms having property L, and a class
of norms first introduced by Fiedler & Ptdk (1960), and investigated subsequently by Stoer
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(1964b). This connection is examined in this section with the object of characterizing those pairs
of norms having property L,,.
An L-norm (Stoer 1964 5) is a norm defined on X, satisfying the following two conditions:
(A1) for any £, 1 < £ < n, and any permutation matrix P,

lub (P(I, ® 0) PT) < 1,
(A2) for any n x n matrix 4, ® 4, ® ... @ 4;, with the 4, all square, and any P,
lub(P(4,® 4, ® ... ® 4y) PT) < max{lub(P(0®...09 4;®0... ®0) PT)}.
1<j<t

(These conditions are expressed in a different notation from that used by Stoer 19645.) It is
easy to see that every L-norm is absolute (see Stoer 1964 5). Conditions (A 1) and (A 2) are now
examined.

REMARK 6.3. A norm |. | satisfies (A 1) if and only if it is subspace monotonic.
Proof. Now, for any P and £, 1 < k < n,
N P(x, ®0)|
lub (P(1, ® 0) PT) = su 1P ©0)]
OO =R P e s
where the supremum is taken over all non-zero vectors &, ® x,€X,, with &, € X,.. Hence the
result follows immediately from definition 2.10 and (A 1).

Turning now to condition (A 2), it is clear from corollary 3.7, by using lemma 3.1, that a norm
having property L satisfies (A 2). As condition (A 2) only involves a single norm, in order to
obtain a connection with property L,, it is convenient to introduce an extension of condition (A 2)
for a pair of norms | .|y, | . |2

(A 3) for any m x n matrix 4, ® 4, ® ... @ 4,, with the 4, all non-vacuous, and any P and @,

lub{§(4, @4, ® ... ®4) < max{lubfP(0®...004,;®0... ®0)}
1<j<t
Itis similarly clear, again from corollary 3.7 and lemma 3.1, that a pair of norms having property
L,, satisfies (A 3). Property L, is now characterized by the following lemma.

Lemma 6.4. The pair of norms |.|,, | .|, has property L,, if and only if condition (A 3) is
satisfied and ||. ||, is subspace monotonic.

Proof. The necessity of the conditions follows from the above comments together with remark
2.13. Suppose then that the pair of norms satisfies (A 3) and ||.]|; is subspace monotonic. Let
¥ =P @x)eX,, y = Q(y @Y, X, satisfy

[%,. @ 0]1p < [y D02, [0® %,1p< [0 ¥all20s (118)

forsome Pand Q. Ify, or y,is zero then, correspondingly, &, or #, is also zero, and it is immediate
that | ]; < ||yll,. Suppose, therefore, that y, and y, are both non-zero and, using remark 2.11,
let (w; @ 0)¥ and (0 @ w,;)¥ be dual, with respect to | . |5, to ¥; @ 0 and 0 @ y,, respectively,
where w, and y, have the same dimension and so do w, and y,. Furthermore, by suitable scaling,
w, and w, may be chosen such that

W'Yy = (91 ® 029, Wiy, =[|0 @ ¥s0, (119)
and thus || (w; @ 0)1)3, = | (0 ® w,)¥|I}, = 1. Now, letting

%, wi %, Wit

4= Ay= 22
! ”3’1@0“20 2 ”0@3’2”20
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it follows from (119) that

. Ay =%, Ay, =%, (120)
Furthermore, since
(i ®0)"z| % & 0”1P

4,®0)z|,p =
' ”( 1@ ) ”1P ”yl('Boan
it follows that
% ®0 (w; ®0)H2
ubP9(4, ® 0) = {{y;g‘,};m' e Cjme 0l =1, ()
by (118). Similarly,
lubf9(0 @ 4,) < 1. (122)

Now, by (120),
[#]1 = [4131 ® 4235]1p < lubT8(4; © 45) [¥]|2
and it then follows from condition (A 3), (121) and (122) that ||#|, < ||¥],. Thus property L,,
holds, which proves the sufficiency of the conditions.

COROLLARY 6.5. If the pair of norms |. |, ||. |, has property L then they are both L-norms.

Proof. By lemma 3.2 each of the norms has property L so, using remark 6.3, the result follows
directly from lemma 6.4, since, if || . ||; = | . |5, condition (A 3) obviously implies condition (A 2).

Itis noted that lemma 6.4 is essentially a generalization and extension of theorem 2 of Lancaster
& Farahat (1972). [This theorem is itself quite similar to theorem 2 of Stoer (19645).] From
the proof of lemma 6.4, it is clear that the corresponding result for a subspace monotonic norm
satisfying condition (A 2) is obtained by imposing the restrictions that P = @, and that », and
¥, have the same dimension, in the definition of property L. Thus, with remark 6.3, this yields

CoROLLARY 6.6. A norm |.| is an L-norm if and only if for any P, and any & = P(&; @ &,),
y =Py, ®y,) €X, with ;,y,€X,, forsome £k, 1 <k <n-1,

[# @0|p <[y, @0 and [0@%[p <[0®y:r = 5] <]yl
By using a result of Stoer (1964 ), a complete characterization of property L is now presented.

THEOREM 6.7. The pair of norms ||. ||, | .|, has property L if and only if there exist D, € Z,,,
D,e 2, such that

(i) ifm=n=2,].|ip, = |.|2p, and this norm is absolute and symmetric,

(ii) ifmorn > 2, |.|1p, = &(.), [ [lap, = f5(.) for some p, 1 < p < o0

Proof. Suppose first that the pair of norms has property L, then by corollary 6.5 they are both
L-norms. It is proved in Stoer (19645) that a norm ||.| on X, is an L-norm if and only if, for
n = 2,itis absolute or, for n > 2, there exists D € Z,, such that||. ||, = I%(.) forsomep, 1 < p < ©

From this result, if m > 2 and » > 2, (ii) follows immediately by corollary 6.2, on using
lemma 3.1.

Consider now the case when m = 2 and n > 2. Then |. |5, = [3(.), for some p and some D,.
Now define D, so that |le;|;p, = 1 for j = 1, 2. Let ¥ = (x,%,)T be any vector in X,, and choose
y =3y, ®y,eX, such that

|31 ®0]2p, = L;(¥1 @ 0) = |x1], [0 @ yyflap, = [0 @ y,) = |x,]. (123)

By the definition of Dj, [|(x;0)%||1p, = |%1], [[(0%3)"]1p, = |%s|, and thus by remark 2.14, on
using lemma 3.1, equations (123) imply that |||, = |¥[aspn, Hence, from the definition of the

l,-norms and (123),
1#10, = |¥ll2p, = L) = G(|#]) = & (%),

yielding the desired result for this case. By symmetry the case m > 2, n = 2 follows in a similar
manner.
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Next consider the case m = n = 2. By the quoted result of Stoer, the norms | .|, and ||. |, are
both absolute. Let D, and D, be such that

lelin, = l|eflap, = 1, for j=1,2.
Then, for any & = (%,%,)" € X,, and any 2 x 2 permutation matrix P,

| (xxo)T”wl = ||P(x10)'1‘“w2 =|xnl, | (Oxz)T“w, = |P(043)"||2p, = |#a]-

So, by remark 2.14 and lemma 3.1, |[%|,p = || P%|.p, whence the norm |.||;p, is equal to the
norm | . [|yp, and is symmetric.

Now suppose conversely that there exist D; and D, such that (i) or (ii) holds. If m or » > 2 then,
by using corollary 6.2 and lemma 3.1, (ii) implies that the pair ||.||;, ||.|l; has property L. If
m = n = 2, for any 2 x 2 permutation matrices P and @, consider any two vectors, & = P(x,x,)T,

¥ = Q(#192)", satisfying

[P(%10)T[1p, < |Q(#:10)%|2p,  [P(0x2) |l 1p, < [|Q(092)" |2,
By condition (i), these inequalities imply that || < |y], so |#]p, < |¥[2p, Py the monotonicity
of the norm. Hence, by lemma 3.1, the pair ||. |;, || . | has property L, which completes the proof.

CoroLLARY 6.8. The norm ||.|| has property L if and only if there exists D € Z,, such that

(i) ifn =2, |.|pis absolute and symmetric,

(ii) ifn > 2, ||.|p = &&(.) for some p, 1 < p < 0.

CoRrOLLARY 6.9. A norm on X, n > 2, has property L if and only if it is an L-norm.

It is observed that, in the proof of theorem 5.7, instead of the requirement that the norm |. ||
have property L, it would be sufficient if it were an L-norm, since, apart from the fact that the
norm is absolute, the only use made of property L is when P = @ and the submatrices involved
are square. Thus condition (A 2) would suffice in place of condition (A 3). However, corollary
6.9 implies that, in fact, the only possible relaxation of the conditions in theorem 5.7 is for the
case n = 2, when the condition that the norm |.|, be symmetric, for some De%,, may be
dropped. These comments apply similarly to theorem 5.12 and corollary 5.13.

7. CONCLUDING REMARKS

In § 5 necessary and sufficient conditions for optimal scalability in senses (I), (IVA) and (IV)
have been obtained for particular classes of matrices and norms. In the following discussion
attention is mainly confined to case (I), the similarity scaling, however, it is easily seen that it
is also applicable to the two-sided scaling, with appropriate minor modifications.

For suitable norms, corollary 5.13 indicates that the necessary and sufficient condition for
a ¢.b.s.d. matrix A to be optimally scalable in sense (I) is that | 4| has property C.. The relevant class
of norms comprises those norms having properties L and S* which are strongly monotonic and
have strongly monotonic duals. However, from theorem 5.1 and corollary 5.11, it is seen that
property C is necessary for optimal scalability for a larger class of norms, since it is then only
required that the norm have property S’ and satisfy the strong monotonicity conditions. Con-
versely, by theorem 5.7, |4| having property C is a sufficient condition for optimal scalability
if the norm just has properties L and S*. From corollary 6.9 it is seen that, for norms on X, with
n > 2, anorm | .| has property L if and only if | ¥ = /,(D, ) for some p, 1 < p < 00, and some
D,€ 2. Therefore, it is only for this class of norms, with 1 < p < oo, that the characterization of
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optimal scalability given by corollary 5.13 is applicable. It seems likely that, for z > 2, it is only
for this class of norms with 1 < p < oo that| 4] having property Cis a sufficient condition for optimal
scalability, since theorem 5.7 depends critically on theorem 3.25 and corollary 3.7. As noted
previously, the conditions of theorem 3.25 can be relaxed so that it is only required that the norm
be orthant-monotonic (Gries & Stoer 1967), and it is easy to show that orthant-monotonicity implies
subspace monotonicity. Thus it seems reasonable to conjecture that subspace monotonicity is
necessary for theorem 3.25 to hold. Additionally, the result of corollary 3.7 is equivalent to con-
dition (A 3) of § 6, so by lemma 6.4 the dependence of theorem 5.7 on theorem 3.25 and corollary
3.7 would be essentially equivalent to requiring property L. Although it appears likely from the
discussion so far that property L is necessary for |4| having property C to be a sufficient condition
for optimal scalability, it is possible that there may be norms without property L for which this
still holds. The reasons for this are, first, that there might be norms which are not subspace
monotonic, but for which theorem 3.25 still holds. Secondly, the use made of corollary 3.7
in theorem 5.7 is in somewhat special circumstances, in that the deduction that lub (4 @ 4)
= max {lub (4 @ 0), lub (0 ® 4)} is only required when p(4) < p(A) and 4 is the direct sum
of irreducible matrices all having the same spectral radius.

Corresponding comments apply to the two-sided scaling cases, (IVA) and (IV), for c.b.s.d.
matrices B and C, or 4 and A~ respectively. Again in these cases, for m or # > 2, it seems likely
that it is only for the class of norms defined by (114), with 1 < p < oo, that |B||C| and |C| | B|,
or |4| |471|, having property C is a sufficient condition for optimal scalability. This is suggested
by theorem 6.7 which implies that a pair of norms has property L if and only if they are of the
form (114) with 1 < p < 0.

As mentioned above, it seems unlikely that property C is a sufficient condition for optimal
scalability (in senses (I), (IVA) and (IV)), except for the classes of norms discussed above.
However, it follows from corollaries 5.8, 5.20, and 5.27 thatif |4|, | B| |C| and |C| | B|, or |4| |47Y|,
have pairs of positive left and right P-vectors then optimal scalability in sense (I), (IVA) or (IV),
respectively, is attainable, provided only that the relevant norm, or pair of norms, is absolute
and has property S.

All the comments of this section so far are also applicable to non-c.b.s.d. matrices, or pairs of
matrices, provided the norm, or pair of norms, is additionally lub-absolute.

Itisseen that either property S’ or property S isinvolved in all of the necessary and the sufficient
conditions for optimal scalability discussed above. Moreover, theorems 5.1 and 5.4 only furnish
the minimal condition numbers for norms or pairs of norms having property S’. Therefore, it
would be interesting to have characterizations of the norms which have these properties (as was
obtained for property L in §6) or at least to establish whether there are norms for which these
properties hold, other than the norms of the form (114).

In conclusion, in this paper, optimal scalability in senses (I), (IVA) and (IV) has been com-
pletely characterized for arbitrary matrices and norms of the form /,(D,x), Dye &, or pairs of
norms of the form (114), respectively, with p = 1 or co. For 1 < p < o0, optimal scalability with
respect to these norms, or pairs of norms, has been characterized for matrices, or pairs of matrices,
having c.b.s.d. It remains an open problem to obtain corresponding characterizations of optimal
scalability with respect to these norms for arbitrary matrices. In particular, it would be highly
desirable to obtain such a characterization for the spectral norm, i.e. the case p = 2.
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